作物杂志, 2024, 40(2): 221-227 doi: 10.16035/j.issn.1001-7283.2024.02.027

生理生化·植物营养·栽培耕作

襄阳地区花生茬土壤不产毒黄曲霉菌的筛选及其特性分析

王雪,1,2,3, 李力1, 张姝娟1, 朱梦洁1, 张奇2,3, 李培武2,3, 董菁1, 王盾,1,2,3, 吴垭楠4

1襄阳市农业科学院,441057,湖北襄阳

2中国农业科学院油料作物研究所,430062,湖北武汉

3湖北洪山实验室,430062,湖北武汉

4襄阳市公共检验检测中心,441057,湖北襄阳

Screening and Feature Analysis of Atoxigenic Aspergillus flavus in Reducing Aflatoxin Prodution in Peanuts Soil in Xiangyang

Wang Xue,1,2,3, Li Li1, Zhang Shujuan1, Zhu Mengjie1, Zhang Qi2,3, Li Peiwu2,3, Dong Jing1, Wang Dun,1,2,3, Wu Yanan4

1Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China

2Oil Crops Research Institute of Chinese Academy of Agriculture Sciences, Wuhan 430062, Hubei, China

3Hubei Hongshan Laboratory, Wuhan 430062, Hubei, China

4Xiangyang Public Inspection and Testing Center, Xiangyang 441057, Hubei, China

通讯作者: 王盾,研究方向为农产品安全,E-mail:wangdunzju@163.com

收稿日期: 2022-04-25   修回日期: 2023-11-8   网络出版日期: 2023-12-14

基金资助: 国家自然科学基金(32030085)
农业农村部生物毒素检测重点实验室开放课题(SWDSJC2018001)
湖北洪山实验室(2021hszd015)
襄阳市青年英才开发计划(2018)
襄阳市农科院青年基金(2020)

Received: 2022-04-25   Revised: 2023-11-8   Online: 2023-12-14

作者简介 About authors

王雪,研究方向为农产品安全,E-mail:mayxuer@qq.com

摘要

通过对襄阳花生茬土壤中黄曲霉菌进行初筛,并对筛选出的菌种进行特性分析和测序鉴定,最终确定为黄曲霉菌种,通过液体发酵培养,测定土壤中黄曲霉毒素(AFT)含量,同时筛选不产黄曲霉毒素的黄曲霉菌株,通过平板初筛到几株抑菌效果较好的黄曲霉菌株,将标准产毒菌株与非产毒菌株进行共生培养,测定AFT含量。结果显示,有4株非产毒黄曲霉共生菌株的黄曲霉素毒素含量较对照菌株降低80%以上,其中XZ38抑制产毒率达99.49%,说明非产毒黄曲霉菌株在抑制产毒黄曲霉生长、降低或消除AFT方面有很大作用,可作为田间生物防治黄曲霉污染的备选菌株。

关键词: 黄曲霉菌; 非产毒黄曲霉菌; 特性分析

Abstract

Several Aspergillus flavus strains were isolated from Xiangyang, Hubei peanut soil medium. Through characteristic analysis and sequencing identification, the trains were identified as Aspergillus flavus strains. Using liquid fermentation culture, aflatoxin content in the soil was detected, and the atoxigenic Aspergillus flavus strains were obtained at the same time. Through the flat screening, the several good Aspergillus flavus strains were screened at the beginning. The standard and non-virulent strains were used in symbiotic culture to determine the AFT content. The results showed that there were four strains of enterotoxigenic symbiotic strains of Aspergillus flavus, toxins aflatoxin content lower than control strains over 80%, including XZ38 inhibitory reached 99.49%. This indiated that non-toxigenic Aspergillus flavus strains had a great role in the inhibition of enterotoxigenic aspergillus flavus growth, reduction or elimination aflatoxin, and could be used as alternative strains for biological control for the field aflatoxin contamination offers a good alternative.

Keywords: Aspergillus flavus; Atoxigenic Aspergillus flavus; Characteristic analysis

PDF (549KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王雪, 李力, 张姝娟, 朱梦洁, 张奇, 李培武, 董菁, 王盾, 吴垭楠. 襄阳地区花生茬土壤不产毒黄曲霉菌的筛选及其特性分析. 作物杂志, 2024, 40(2): 221-227 doi:10.16035/j.issn.1001-7283.2024.02.027

Wang Xue, Li Li, Zhang Shujuan, Zhu Mengjie, Zhang Qi, Li Peiwu, Dong Jing, Wang Dun, Wu Yanan. Screening and Feature Analysis of Atoxigenic Aspergillus flavus in Reducing Aflatoxin Prodution in Peanuts Soil in Xiangyang. Crops, 2024, 40(2): 221-227 doi:10.16035/j.issn.1001-7283.2024.02.027

黄曲霉毒素(AFT)是由黄曲霉菌、寄生曲霉和集蜂曲霉等真菌类产生的一种剧毒性致癌物质,在土壤中普遍存在。在适当温湿度条件下,很容易侵染花生、玉米和小麦等农作物,对作物生产及食品健康造成危害。近年来,我国有限量标准来限制AFT污染的农作物流入市场,但标准限值低于欧盟等,所以我国花生等农产品由于AFT超标问题而被限制出口,造成巨大的经济损失。AFT化学性质非常稳定,而脱除AFT也比较困难,尤其要开发一种不破坏农作物本身营养物质,又不造成二次污染的方法更是许多专家学者研究的方向。目前,主要通过物理法和化学法来处理AFT,基本原理就是把毒素转变成无毒化合物或复合物,或者把其降解为无毒小分子碎片,从而达到降解毒素的目的。本文对生物防治进行探讨,土壤中微生物众多,能够从源头上预防AFT污染,具有很重要的意义,而具有生物防治作用的微生物在自然界中普遍存在,从土壤中筛选出一种非产毒黄曲霉菌株来防治黄曲霉素具有较好的应用前景。

Dorner等[1]1992年研究不产毒菌在花生种植中防控AFT污染的可行性,并取得了理想的效果。在田间试验中,不同非产毒黄曲霉菌剂剂型和施加方案对花生[2]、棉花[3]和玉米[4]的AFT有很好的防治效果。美国已成功注册了Afla-guard®和AF36®2个不产毒黄曲霉菌株,并用于作物种植,花生贮藏过程中AFT平均减少85%[5]。非洲由于气候等原因许多农作物中AFT污染十分严重,不产毒黄曲霉竞争抑制产毒菌的侵染,在实验室和大田试验中均得到了验证,该方法可以降低70%以上的AFT污染,而且有注册的基于不产毒黄曲霉菌的商业化产品AflasafeTM[6-7]。在欧洲,可用于玉米防控的生物防治菌剂MUCL54911正处于商品化准备阶段[8]。在澳大利亚,利用不产毒黄曲霉竞争排斥产毒菌的作用防控花生AFT污染得到了验证,Pitt等[9]研究表明,在土壤中施加不产毒黄曲霉菌比产毒菌高10倍以上数量时,花生AFT减少98%。阿根廷花生种植面积很大,AFT污染也是十分关注的问题。Zanon等[10]做了连续2年的大田试验,在土壤中施加3株不产毒黄曲霉菌AR27、AR100G和AFCHG2,结果表明土壤和花生上的产毒菌比例明显降低,花生中AFT含量降低了78.4%~89.6%。

国内在不产毒黄曲霉菌在AFT污染防控上的研究还处于起步阶段[11]。相关研究主要体现在实验室内生物防治菌的筛选、优化及防控机理的探究上。魏丹丹等[12]从全国不同花生产区土壤中分离出3株抑制效果较好的不产毒黄曲霉菌,可作为生物防治菌的候选菌株。刘俊等[13]从山东莱西的土壤中筛选出可用于当地AFT防治的不产毒黄曲霉菌CGMCC NO.14122,该菌株生长和产孢子能力与野生型黄曲霉菌无差别。不同地区气候、土壤、环境差异很大,利用不产毒黄曲霉菌防控的方法需要进一步研究,国内在不产毒黄曲霉的田间试验和应用效果等方面的报道很少,有关生物防治菌制剂的剂型、配方及使用效果等方面的研究鲜有报道。本试验就花生土壤中高竞争性的不产毒菌株进行筛选,为田间花生产前生物防治提供多株高竞争性非产毒菌株。

1 材料与方法

1.1 试验材料

黄曲霉标准菌株CGMCC 3.4408由农业农村部生物毒素检测重点实验室提供,以下简称SZ。

1.2 试验方法

1.2.1 土壤样品采集及处理

襄阳市花生主产区土壤分为沙壤土、砂石地及黄黏土3类,在花生成熟期分别抽取湖北省襄阳市襄州、枣阳、宜城、谷城、南漳和高新区等10个县市区花生主产区,共计20余份土壤样品,低温4 ℃冰箱暂存备用。土壤经研磨后,称10.0 g加入三角瓶中,加90 mL无菌水,摇床混匀5 min,制备成100 mL样品基础液,备用。

1.2.2 菌种分离培养

取基础液100 µL,用灭菌涂布棒均匀涂布在DG18培养基平板上,重复4次,置于28 ℃避光培养5 d,再挑取黄绿色菌斑,接种在AFPA培养基上,同样条件分离培养3 d,保证1个平板上长出单个菌落。

1.2.3 菌种鉴定

AFPA培养基上长出菌落后,将正面白色、背面橙色的菌斑初步认定为黄曲霉菌。再将黄曲霉菌株转入DG18培养基上,28±1 ℃避光分离培养5 d,分离纯化直到长出单个菌落,将单一菌落平板测序鉴定。粗提基因组DNA,选择相应引物扩增特异片段,送北京擎科生物科技股份有限公司武汉分公司测序鉴定。

1.2.4 非产毒菌的筛选

将上述鉴定出的黄曲霉菌种单菌落培养基上的孢子用0.1%吐温80洗脱下来,制备成黄曲霉菌分生孢子悬液。用光学显微镜计数,调整浓度为4×105个/mL,4℃冰箱保存备用,用30 mL沙氏液体培养基锥形瓶,调整最终孢子液浓度为×106 cfu/mL,在28 ℃、200转/min避光摇床培养7 d。

将培养液破壁粉碎后,过滤得粗提液,切记交叉污染,取1 mL过免疫亲和柱,用1 mL甲醇洗脱,收集洗脱液上机测AFT产毒力。

将AFT混标用甲醇稀释制备成浓度分别为1、5、10、50、100、500 µg/L共6个梯度的AFT标准溶液,采用高效液相色谱―柱后光化学衍生法测定发酵液中AFT含量。

色谱条件:色谱柱为C18(5 µm,4.6 mm×150 mm),柱温35 ℃;流动相为甲醇:水(45:55,V:V);流速0.9 mL/min;检测条件:光化学衍生器254 nm;以荧光检测器检测,激发波长360 nm,发射波长440 nm,进样量10 μL。

1.2.5 拮抗菌的筛选

将标准产毒菌株CGMCC3.4408(购置于中国农业科学院油料作物研究所)活化,培养5 d后洗孢子冷冻保存。分别将孢子直接与非产毒菌株接种于PDA平板上,在距离边缘2 cm位置标记产毒与非产毒,同时在空白平板上同样位置单独接种标准产毒菌株,4个对照,每天观察菌落形态及抑菌状态,如出现污染情况,立即转板。分别在28 ℃培养5 d,并每天在暗箱中365 nm紫外灯下观察标准菌株产毒抑制情况,每天同一时间测量抑菌带,计算抑菌率[14]

1.2.6 产毒抑制率的测定

共生培养:将筛选出的非产毒拮抗较好的菌株与标准产毒菌株,在显微镜下准确数好孢子数量,将2种孢子液浓度调整为105 cfu/mL[15],分别将1 mL非产毒菌和产毒黄曲霉标准菌株接种于30 mL液体沙氏培养基中,28 ℃,200转/min中避光摇床共生培养7 d[16],每天观察生长状态,同时接种105 cfu/mL孢子浓度的标准产毒株1 mL和无菌水1 mL作空白对照。分别测定空白标准产毒株培养液和共生培养液中AFT的含量,计算抑制产毒量,得出抑制率。

提取纯化:将共生培养液和对照培养液做破壁处理后,用灭菌纱布过滤,切勿交叉污染,离心取上清,取1 mL上清液过免疫亲和柱纯化,2 mL甲醇洗脱置换溶剂,过0.22 µm微孔滤膜过滤后,取1 mL上液相色谱检测,色谱检测条件同1.2.4。

1.3 数据处理

计算抑菌率用如下计算公式:

抑菌率(%)=(对照平板中产毒菌半径-共生培养平板中产毒菌半径)/对照平板中标准产毒菌半径;

土壤中黄曲霉的菌落数(cfu/g)=平板的菌落数/(0.025×稀释倍数);

每克土壤中产生AFT的量=每克土壤中黄曲霉菌落数×黄曲霉平均产AFT的量。

采用Excel处理试验数据。

2 结果与分析

2.1 黄曲霉菌株分离纯化的结果

通过菌落形态鉴定,从20份土壤样品分离纯化出200余株黄曲霉菌株,PCR扩增鉴定为黄曲霉菌(图1),并对其测序,测序结果经BLAST软件进行同源性比较(表1),均鉴定为黄曲霉菌株,且同源性为98%以上。

图1

图1   PCR扩增鉴定电泳图

Fig.1   PCR amplification identification electropherogram


表1   BLAST软件上菌株分类比对结果

Table 1  Classification comparison results of strains on BLAST software

样品
Sample
同源性
Homology
AFPA平板菌落颜色
The colony colour
of AFPA plate
参考物种
Reference
species
GC-01702/720(98%)亮橘色曲霉属Aspergillus
ZY-06618/628(98%)亮橘色曲霉属Aspergillus
ZY-07605/608(99%)亮橘色曲霉属Aspergillus
ZY-08597/599(99%)亮橘色曲霉属Aspergillus
GX-01625/631(99%)亮橘色曲霉属Aspergillus
NZ-01598/601(99%)亮橘色曲霉属Aspergillus
XZ-34599/600(99%)亮橘色曲霉属Aspergillus
XZ-40662/672(99%)亮橘色曲霉属Aspergillus
XZ-63604/608(99%)亮橘色曲霉属Aspergillus
XZ-69659/669(99%)亮橘色曲霉属Aspergillus
YC-01601/602(99%)亮橘色曲霉属Aspergillus
YC-03616/623(99%)亮橘色曲霉属Aspergillus
YC-11627/630(99%)亮橘色曲霉属Aspergillus
YC-14621/629(99%)亮橘色曲霉属Aspergillus
......

新窗口打开| 下载CSV


2.2 黄曲霉菌株产毒量的测定

2.2.1 非产毒菌筛选结果

襄阳花生主产区土壤中分离出200余株AFT产毒菌株,对菌株产毒力进行液相荧光检测,从图2中可以得出不同区域均以产AFB1为主,与AFT总量接近,AFB1>AFB2>AFG2>AFG1,说明襄阳花生产区土壤黄曲霉菌以AFB1毒素为主,也对花生收获后期污染危害较大。而高产毒菌株产毒达到每克土壤中AFB1含量为1407.9 µg,该高产毒菌株出现在襄阳襄州地区,该地区种植花生出现污染风险较大。

图2

图2   不同区域黄曲霉菌产毒力

Fig.2   Toxigenic ability by Aspergillus flavus at different regions


通过本次对襄阳地区花生茬土壤抽样,按照土壤中分离出的黄曲霉菌株数量统计(图3),筛选出不产毒菌株49株,不产毒菌株占黄曲霉菌总量31%,产毒菌株比例为69%。

图3

图3   花生在土壤中产毒株与不产毒株分布比例

Fig.3   Proportion of distribution of toxin-producing and non-toxic strains in peanut stubble soil


2.2.2 菌落拮抗性初筛结果

将筛选出的非产毒黄曲霉菌49株与标准产毒株平板培养后,每株菌株培养4个平板,发现有42株拮抗性较好的非产毒株,有明显的抑菌带,图4中显示抑菌带超过0.5 cm。将42株菌株继续观察,抑菌带一直保持在0.5 cm以上,15 d后标准产毒菌停止生长,对筛选的高产毒菌株YC35进行拮抗性对比试验,测量抑菌带,计算抑菌率(图5)。

图4

图4   产毒株和非产毒株的拮抗试验

Fig.4   Antagonism experiments of toxin-producing and non-toxin-producing strains


图5

图5   非产毒菌对产毒菌的抑菌率

Fig.5   Inhibition rates of toxin-producing strains by non-toxin-producing strains


在紫外灯下继续观察上述42个非产毒菌株和产毒株的共生特性,发现有10株非产毒菌株对产毒菌株CGMCC 3.4408有明显的抑制性,如图6显示,在荧光下,AFT荧光斑有明显减弱。

图6

图6   黄曲霉菌的荧光观测图

(a) 产毒株空白对照,(b) 产毒株和非产毒株共同培养。

Fig.6   Fluorescence observation of Aspergillus flavus

(a) Blank control of toxin-producing strain, (b) Toxin-producing and non-toxin-producing strain co-cultured.


2.3 不产毒黄曲霉对产毒黄曲霉的产毒抑制性
2.3.1 黄曲霉毒素校准曲线

AFT出峰时间依次为G2、G1、B2和B1,分离度很好,出峰时间为20 min,液相谱图如图7所示,根据色谱面积(Y)和浓度(X,µg/L)绘制标准曲线,得到线性回归方程(表2),4种标准品(AFB1,AFB2,AFG1,AFG2)的线性关系很好。

图7

图7   4种AFT混标的液相标准图谱

Fig.7   Liquid phase standard map of the four AFT mixed standards


表2   AFT标准曲线

Table 2  Standard curve of AFT

AFT标准品
AFT standard
标准曲线
Standard curve
R2检出限
Limit of detection (LOD) (µg/kg)
定量限
Limit of quantification (µg/kg)
AFG2Y=392 96.0X-17 563.00.999 968 50.261.3
AFG1Y=12 069.0X-9167.470.999 956 50.361.3
AFB2Y=88 965.4X-57 284.30.999 972 80.181.0
AFB1Y=44 595.7X-35 890.30.999 968 70.241.0

新窗口打开| 下载CSV


2.3.2 非产毒菌对毒素的抑制性分析

经前期试验,非产毒菌和标准产毒菌株孢子浓度为105:105,共生培养状态如图8,菌丝体生长明显得到抑制,将培养液提取净化后,经液相色谱检测,取3个平行结果平均值,表3显示,标准菌株AFT均值为1072.95 µg/g,最终得到4株有明显的抑制效果,AFT明显降低,其中非产毒株YC10抑制率达到92.9%,XZ38抑制率达到99.5%,2株产毒抑制效果很高,明显高于平板上的抑菌效果,这可能是菌株有2种抑制效果,4株菌株共生培养状态如图8所示,一种可能性是不产毒菌株竞争性抑制产毒菌株生长,另一种可能性是液体发酵过程中产生了某种生物酶,抑制AFT产生。

图8

图8   产毒株和非产毒株菌共生菌丝球状态

Fig.8   Status of symbiotic mycelium of toxin- producing and non-toxin-producing strains


表3   不产毒黄曲霉菌对产毒菌的抑制效果

Table 3  Inhibition effects of non-toxic on toxin-producing Aspergillus flavus

菌株
Strain
产毒量
Toxin
production
(µg/kg)
抑制产毒量
Inhibition of
toxin production
(µg/kg)
抑制产毒率
Inhibition rate of
toxin production
rate (%)
SZ3.4408(SZ)(105)1072.95±1.67
NZ03:SZ(105:105)197.26±3.05875.69±3.0581.61±1.73a
NZ06:SZ(105:105)676.07±4.56396.88±4.5636.99±2.02a
ZY10:SZ(105:105)1050.52±5.6922.43±5.692.09±3.06b
ZY11:SZ(105:105)1053.58±5.0419.37±5.041.81±2.33a
XZ21:SZ(105:105)936.82±4.83136.13±4.8312.69±1.85a
XZ38:SZ(105:105)5.49±0.191067.46±0.1999.49±0.75c
XZ52:SZ(105:105)869.79±3.66203.16±3.6618.93±1.32d
XZ56:SZ(105:105)869.47±2.92203.48±2.9218.96±1.25d
XZ59:SZ(105:105)192.45±2.04880.50±2.0482.06±0.80c
XZ64:SZ(105:105)604.78±3.06468.17±3.0643.63±1.58d
YC10:SZ(105:105)75.77±1.35997.19±1.3592.94±0.67b

新窗口打开| 下载CSV


在200倍显微镜下观察孢子形态(图9),通过标准菌株孢子形态对比发现,YC10和XZ38孢子明显大于标准菌株孢子,而且生长速度较快,有较好的抑菌效果,同时对AFT也有很高的降解率。

图9

图9   YC10(左)和XZ38(右)在显微镜下的孢子形态

Fig.9   Spore morphology of YC10 (left) and XZ38 (right) under the microscope


3 讨论

有研究[17]表明,我国花生主产区中,在长江流域产区土壤中黄曲霉菌落检出率最高。目前对于襄阳本地的非产毒黄曲霉菌相关研究还未见深入报道,本研究在前期对襄阳花生土壤中黄曲霉菌调查分析[18-20]基础上,进一步研究了黄曲霉菌对花生侵染力风险的关系,在襄阳花生主产区土壤中分离出的黄曲霉菌中筛选出49株不产毒黄曲霉菌株,在抑制黄曲霉菌落试验中,挑选出不产毒黄曲霉菌NZ03、YC10、XZ38、XZ59、NZ06和XZ59等拮抗菌株,分别与标准产毒黄曲霉菌株3.4408平板单菌落培养后,黄曲霉菌落停止生长,也不再产生孢子,抑菌带较为明显,抑菌带均超过0.5 cm,抑制率在70%以上。

将孢子浓度调节为105:105比例(产毒菌株和非产毒菌株),避光液体发酵共生培养,产毒7 d后,对照菌液中AFT为1072.95 μg/g,有4组共生菌液中AFT明显降低,这4株菌株分别为NZ03、YC10、XZ38和XZ59,抑制产毒率均在80%以上(表3),说明该4株菌株的菌体和菌液对AFT产生均具有明显的抑制效果。YC10和XZ38抑制产毒率达90%以上,XZ38抑制产毒率高达99.5%,AFT降至5.49 μg/g。以上说明这2株非产毒菌具有很大的研究价值,进一步表明非产毒黄曲霉菌株可以通过抑制产毒黄曲霉菌孢子的生长和繁殖,从而降低AFT产生,对AFT有很好的降解效果。襄阳花生土壤中的非产毒黄曲霉菌有很大的开发潜力,目前襄阳市调查结果[18,21-22]显示在襄州、宜城及南漳有很大范围的非产毒黄曲霉菌株,有待进一步研究和筛选新的高降解率生防备选菌株库。本项研究中非产毒菌抑制高产毒菌生长的机制、抑制产毒的机理,将是下一步研究的一个重、难点。

4 结论

本研究通过菌落拮抗试验筛选出的非产毒菌株,对产毒菌株有明显的抑菌效果,有希望作为抑制高产毒菌株生长的备选生物防治菌株。其中,有2株非产毒菌株有较好的抑制产毒效果,抑制产毒率在90%以上,有可能是发酵液中存在菌株及发酵代谢产物共同抑制产毒的作用,后期课题的研究就在于对这2株菌株全基因序列及代谢产物的机理研究,结合襄阳本地气候环境与土壤特征,研制出高效新型生物防治菌剂。

参考文献

Dorner J W, Cole R J, Blankenship P D.

Use of a biocompetitive agent to control preharvest aflatoxin in drought stressed peanuts

Journal of Food Protection, 1992, 55(11):888-892.

DOI:10.4315/0362-028X-55.11.888      PMID:31084068      [本文引用: 1]

A three-year study was conducted to evaluate the use of a nonaflatoxin-producing strain of Aspergillus parasiticus (NRRL 13539) as a biocompetitive agent for the control of preharvest aflatoxin contamination of peanuts. The agent was added to the soil of the environmental control plot facility at the National Peanut Research Laboratory and tested by subjecting peanuts to optimal conditions for the development of aflatoxin contamination. Edible peanuts from the treated soil contained aflatoxin concentrations of 11, 1, and 40 ppb for crop years 1987, 1988, and 1989, respectively, compared to untreated peanuts with 531, 96, and 241 ppb, respectively. In addition, treatment in 1989 with low and high inoculum levels of a UV-induced mutant from the NRRL 13539 strain resulted in aflatoxin concentrations of 29 and 17 ppb, respectively, in edible peanuts. Soil populations of the biocompetitive agents were not higher than populations of wild strains of A. flavus/parasiticus in untreated soil subjected to late-season drought stress. This is an important ecological consideration relative to the utilization of this biocontrol system.

Horn B W, Dorner J W.

Effect of nontoxigenic Aspergillus flavus and A.parasiticus on aflatoxin contamination of wounded peanut seeds inoculated with agricultural soil containing natural fungal populations

Biocontrol Science and Technology, 2009, 19(3):249-262.

DOI:10.1080/09583150802696541      URL     [本文引用: 1]

Cotty P J.

Influence of field application of an atoxigenic strain of Aspergillus flavus on the populations of A.flavus infecting cotton bolls and on the aflatoxin content of cottonseed

Phytopathology, 1994, 84(11):1270-1277.

DOI:10.1094/Phyto-84-1270      URL     [本文引用: 1]

Abbas H K, Wilkinson J R, Zablotowicz R M, et al.

Ecology of, regulation of aflatoxin production, and management strategies to reduce aflatoxin contamination of corn

Journal of Toxicology- Toxin Reviews, 2009, 28(2/3):142-153.

[本文引用: 1]

Dorner J W.

Biological control of aflatoxin contamination of crops

Journal of Zhejiang University-Science B (Biomedicine & Biotechnology), 2008, 9(10):787-792.

[本文引用: 1]

Atehnkeng J, Ojiambo P S, Donner M, et al.

Distribution and toxigenicity of Aspergillus species isolated from maize kernels from three agro-ecological zones in Nigeria

International Journal of Food Microbiologyl, 2008, 122(1):74-84.

[本文引用: 1]

Bandyopadhyay R, Ortegabeltran A, Akande A, et al.

Biological control of aflatoxins in Africa: current status and potential challenges in the face of climate change

World Mycotoxin Journal, 2016, 9 (5):771-789.

DOI:10.3920/WMJ2016.2130      URL     [本文引用: 1]

Aflatoxin contamination of crops is frequent in warm regions across the globe, including large areas in sub-Saharan Africa. Crop contamination with these dangerous toxins transcends health, food security, and trade sectors. It cuts across the value chain, affecting farmers, traders, markets, and finally consumers. Diverse fungi within Aspergillus section Flavi contaminate crops with aflatoxins. Within these Aspergillus communities, several genotypes are not capable of producing aflatoxins (atoxigenic). Carefully selected atoxigenic genotypes in biological control (biocontrol) formulations efficiently reduce aflatoxin contamination of crops when applied prior to flowering in the field. This safe and environmentally friendly, effective technology was pioneered in the US, where well over a million acres of susceptible crops are treated annually. The technology has been improved for use in sub-Saharan Africa, where efforts are under way to develop biocontrol products, under the trade name Aflasafe, for 11 African nations. The number of participating nations is expected to increase. In parallel, state of the art technology has been developed for large-scale inexpensive manufacture of Aflasafe products under the conditions present in many African nations. Results to date indicate that all Aflasafe products, registered and under experimental use, reduce aflatoxin concentrations in treated crops by >80% in comparison to untreated crops in both field and storage conditions. Benefits of aflatoxin biocontrol technologies are discussed along with potential challenges, including climate change, likely to be faced during the scaling-up of Aflasafe products. Lastly, we respond to several apprehensions expressed in the literature about the use of atoxigenic genotypes in biocontrol formulations. These responses relate to the following apprehensions: sorghum as carrier, distribution costs, aflatoxin-conscious markets, efficacy during drought, post-harvest benefits, risk of allergies and/or aspergillosis, influence of Aflasafe on other mycotoxins and on soil microenvironment, dynamics of Aspergillus genotypes, and recombination between atoxigenic and toxigenic genotypes in natural conditions.

Mauro A, Garciacela E, Pietri A, et al.

Biological control products for aflatoxin prevention in Italy: Commercial field evaluation of atoxigenic Aspergillus flavus active ingredients

Toxins, 2018, 10 (1):30-43.

DOI:10.3390/toxins10010030      URL     [本文引用: 1]

Pitt J I, Hocking A D.

Mycotoxins in Australia: biocontrol of aflatoxin in peanuts

Mycopathologia, 2006, 162(3):233-243.

PMID:16944290      [本文引用: 1]

The major mycotoxin problem in Australia is the formation of aflatoxins in peanuts by Aspergillus flavus and A. parasiticus. This is controlled by good farm management practice, segregation into grades on aflatoxin content at intake to shelling facilities, colour sorting and aflatoxin assays. A second problem is the potential presence of ochratoxin A in grapes and grape products, resulting from infection by Aspergillus carbonarius. Good quality control before and during wine making ensures ochratoxin A is kept to very low levels, but in dried vine fruit, ochratoxin A levels may be higher. Biocontrol by competitive exclusion has been developed as the most promising means of controlling aflatoxins in peanuts. Some details of the process are given, including some basic laboratory experiments.

Zanon M S A, Barros G G, Chulze S N.

Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina

International Journal of Food Microbiology, 2016, 231:63-68.

DOI:10.1016/j.ijfoodmicro.2016.05.016      URL     [本文引用: 1]

张婉. 非产毒黄曲霉菌株筛选及其在花生种植中的应用研究. 长春: 吉林大学, 2019.

[本文引用: 1]

魏丹丹, 周露, 张初署.

不产毒黄曲霉菌对产毒黄曲霉菌产毒抑制效果分析

现代食品科技, 2014, 30(6):92-97.

[本文引用: 1]

刘俊, 张国朋, 张智猛.

不产毒黄曲霉菌株的筛选鉴定及分子机理研究

花生学报, 2018, 47(3):8-13.

[本文引用: 1]

Zhang W, Chang X, Wu Z, et al.

Rapid isolation of non- aflatoxigenic Aspergillus flavus strains

World Mycotoxin Journal, 2020, 13(2):277-286.

DOI:10.3920/WMJ2019.2490      URL     [本文引用: 1]

In the present study, a method for screening non-aflatoxigenic Aspergillus flavus in soil samples collected from major peanut-growing regions of China was developed. The single colonies were picked and cultured on Aspergillus flavus and parasiticus agar (AFPA). If the reverse side of the colony on AFPA was orange-coloured, it was considered A. flavus or Aspergillus parasiticus. After the genomic DNA of each strain was extracted, 28S rRNA and calmodulin were amplified and sequenced to determine the species. The key gene, aflR, was amplified and digested via polymerase chain reaction-restriction fragment length polymorphism. The aflatoxigenic A. flavus and the non-aflatoxigenic A. flavus and A. parasiticus were distinguished by enzyme digestion of aflR. 156 strains of A. flavus were screened, which consisted of 135 aflatoxigenic and 21 non-aflatoxigenic strains. The aflatoxin producing ability of each strain was confirmed using solid-state fermentation experiments. Using the method developed in the present study, we confirmed that the non-aflatoxigenic A. flavus strains isolated lost their capacity to produce aflatoxins. Considering there could be some alterations in other functional genes, some non-aflatoxigenic strains could be identified inaccurately as aflatoxigenic strains, although that did not occur in the present study. The growth of non-aflatoxigenic A. flavus was observed, and the most rapidly growing non-aflatoxigenic strain was selected for plate confrontation assays and toxic mixed culture experiments. The inhibition rate of non-aflatoxigenic A. flavus against aflatoxigenic A. flavus was 55.4 and 72.6% in potato dextrose agar (PDA) plate and natural soybean medium, respectively. The screened non-aflatoxigenic A. flavus strains provide a microbial resource for biological control of aflatoxin contamination.

姚彦坡, 张立田, 郑百芹.

花生黄曲霉毒素污染生防细菌筛选及菌株B85-1的鉴定和抗菌活性

花生学报, 2016, 45(3):20-26.

[本文引用: 1]

Maxwell L A, Callicott K A, Bandyopadhyay R, et al.

Degradation of aflatoxins B1 by atoxigenic Aspergillus flavus biocontrol agents

Plant Disease, 2021, 105(9):2343-2350.

DOI:10.1094/PDIS-01-21-0066-RE      URL     [本文引用: 1]

Aflatoxins are potent Aspergillus mycotoxins that contaminate food and feed, thereby impacting health and trade. Biopesticides with atoxigenic Aspergillus flavus isolates as active ingredients are used to reduce aflatoxin contamination in crops. The mechanism of aflatoxin biocontrol is primarily attributed to competitive exclusion but, sometimes, aflatoxin is reduced by greater amounts than can be explained by displacement of aflatoxin-producing fungi on the crop. Objectives of this study were to (i) evaluate the ability of atoxigenic A. flavus genotypes to degrade aflatoxin B1 (AFB1) and (ii) characterize impacts of temperature, time, and nutrient availability on AFB1 degradation by atoxigenic A. flavus. Aflatoxin-contaminated maize was inoculated with atoxigenic isolates in three separate experiments that included different atoxigenic genotypes, temperature, and time as variables. Atoxigenic genotypes varied in aflatoxin degradation but all degraded AFB1 >44% after 7 days at 30°C. The optimum temperature for AFB1 degradation was 25 to 30°C, which is similar to the optimum range for AFB1 production. In a time-course experiment, atoxigenics degraded 40% of AFB1 within 3 days, and 80% of aflatoxin was degraded by day 21. Atoxigenic isolates were able to degrade and utilize AFB1 as a sole carbon source in a chemically defined medium but quantities of AFB1 degraded declined as glucose concentrations increased. Degradation may be an additional mechanism through which atoxigenic A. flavus biocontrol products reduce aflatoxin contamination pre- or postharvest. Thus, selection of optimal atoxigenic active ingredients can include assessment of both competitive ability in agricultural fields and their ability to degrade aflatoxins.

张初署. 中国四个生态区花生土壤中黄曲霉菌分布、产毒特征及遗传多样性研究. 北京: 中国农业科学院, 2013.

[本文引用: 1]

张姝娟, 王雪, 王盾, .

襄阳市主要花生种植区土壤中黄曲霉菌分布及产毒力研究

中国油料作物学报, 2022, 44(4):901-909.

DOI:10.19802/j.issn.1007-9084.2021186      [本文引用: 2]

为掌握襄阳市主要花生种植区土壤中黄曲霉菌的分布和产毒特征,从襄阳市主要花生种植区采集土壤样品36份,进行黄曲霉菌分离、鉴定和产毒力研究。结果表明,襄阳市不同花生种植区土壤中黄曲霉菌落数平均为5997.6 cfu/g,且分布存在显著差异,菌落数由高到低依次为襄州、枣阳、宜城、谷城;鉴定获得黄曲霉菌株中产毒菌株占63.6%,产毒量范围 ND~304.9 μg/L,不产毒菌株占36.4%;产毒菌株可分为7种产毒类型组合,其中同时产AFB1、AFB2和AFG1三种类型的黄曲霉菌占比最多,为54.0%。在适宜培养条件下,产毒力分析结果为襄州地区每克土壤中黄曲霉菌产AFT的理论值最高,可达2080.0×103 μg/L,且其中分离出的菌株平均产毒量最高,为218.7 μg/L。可以看出襄阳市花生代表性产区土壤中黄曲霉菌分布数量显著高于我国南、北方花生主产区的平均水平,但其菌株的平均产毒能力却远低于全国其它地区。本研究初步得出了襄阳市花生主产区黄曲霉菌的分布特征和产毒特征,可为襄阳市花生黄曲霉毒素防控提供理论依据。

Mohale S, Medina A, Magan N.

Effect of environmental factors onin vitroand in situinteractions between atoxigenic and toxigenic A.flavus strains and control of aflatoxin contamination of maize

Biocontrol Science and Technology, 2013, 23(7):776-793.

DOI:10.1080/09583157.2013.794895      URL     [本文引用: 1]

Niknejad F, Zaini F.

Candida parapsilosis as a potent biocontrol agent against growth and aflatoxin production by Aspergillus species

Iranian Journal of Public Health, 2012, 41:72-80.

PMID:23308351      [本文引用: 1]

Aflatoxin contamination of food and feed stuff is a serious health problem and significant economic concerns. In the present study, the inhibitory effect of Candida parapsilosis IP1698 on mycelial growth and aflatoxin production in aflatoxigenic strains of Aspergillus species was investigated.Mycelial growth inhibitions of nine strains of aflatoxigenic and non-aflatoxigenic Aspergillus species in the presence of C. parapsilosis investigated by pour plate technique at different pH, temperature and time of incubation. Reduction of aflatoxin was evaluated in co-cultured fungi in yeast extract sucrose broth after seven days of incubation using HPLC method. The data were analyzed by SPSS 11.5.The presence of the C. parapsilosis at different pH did not affect significantly the growth rate of Aspergillus isolates. On the other hand, temperature and time of incubation showed to be significantly effective when compared to controls without C. parapsilosis (P≤0.05). In aflatoxigenic strains, minimum percentage of reductions in total aflatoxin and B1, B2, G1, G2 fractions were 92.98, 92.54, 77.48, 54.54 and 72.22 and maximum percentage of reductions were 99.59, not detectable, 94.42, and not detectable in both G1 and G2, respectively.C. parapsilosis might employ as a good biocontrol agent against growth and aflatoxin production by aflatoxigenic Aspergillus species.

朱婷婷, 陈琳, 岳晓凤, .

湖北省典型花生种植区土壤中黄曲霉菌分布及产毒力研究

中国油料作物学报, 2019, 41(2):255-260.

DOI:10.7505/j.issn.1007-9084.2019.02.014      [本文引用: 1]

为掌握湖北省花生种植区土壤中黄曲霉菌的分布和产毒特征,从罗田、红安、钟祥、襄阳四个典型花生种植区采集土壤样品40份,并进行黄曲霉菌分离、鉴定和产毒力研究。研究结果表明:湖北省不同花生种植区共分离鉴定到黄曲霉菌51株,土壤中黄曲霉菌落数为127.5cfu/g,不同种植区土壤中黄曲霉菌分布存在显著差异,钟祥土壤中黄曲霉菌落数最高,罗田最低;鉴定获得黄曲霉菌株中产毒菌株占96%,产毒量范围0~227.81μg/L,不产毒菌株占4%;产毒菌株分为只AFB1、只产AFB1和AFB2、只产AFB1、AFB2、AFG1和产AFB1、AFB2、AFG1、AFG2毒素4种类型,其中以只产AFB1和AFB2的菌株占比最高,为65%;不同种植区黄曲霉菌株产毒力研究发现,钟祥每克土壤中黄曲霉菌产AFB1的量最高,达11679.70μg/L。本研究可为湖北花生黄曲霉毒素污染预警和防控提供理论依据。 

刘阳. 真菌毒素生物脱毒技术研究. 北京: 科学出版社, 2019.

[本文引用: 1]

/