作物杂志, 2024, 40(2): 30-39 doi: 10.16035/j.issn.1001-7283.2024.02.005

遗传育种·种质资源·生物技术

玉米ZmMAPKKK21基因的克隆和生物信息学分析

张倩,1,2, 任雯2, 赵冰兵2, 周秒依2, 李韩帅2, 刘亚,2, 杜何为,1

1长江大学生命科学学院,434025,湖北荆州

2北京市农林科学院玉米研究所/玉米DNA指纹及分子育种北京重点实验室,100097,北京

Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize

Zhang Qian,1,2, Ren Wen2, Zhao Bingbing2, Zhou Miaoyi2, Li Hanshuai2, Liu Ya,2, Du Hewei,1

1College of Life Science, Yangtze University, Jingzhou 434025, Hubei, China

2Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences / Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China

通讯作者: 杜何为,研究方向为玉米遗传育种,E-mail:200457@yangtzeu.edu.cn 刘亚,研究方向为玉米遗传育种,E-mail:srlyyd@gmail.com

收稿日期: 2023-02-12   修回日期: 2023-05-11   网络出版日期: 2023-06-01

基金资助: 北京市农林科学院科技创新能力建设专项(KJCX20230203)

Received: 2023-02-12   Revised: 2023-05-11   Online: 2023-06-01

作者简介 About authors

张倩,研究方向为玉米分子生物学,E-mail:zg0502q@163.com

摘要

丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)在植物应对生物和非生物胁迫过程中发挥着重要作用。在前期研究中我们挖掘到ZmMAPKKK21这一潜在的重要抗旱基因,本研究从玉米抗旱自交系J24中克隆获得ZmMAPKKK21基因,并对其进行生物信息学分析。结果表明,玉米ZmMAPKKK21基因开放阅读框长1419 bp,编码472个氨基酸,是不具有信号肽的亲水性蛋白,且其启动子序列含有多个与逆境胁迫和激素有关的顺式作用元件;玉米中的MAPKKK21蛋白预测定位在细胞核上,蛋白互作预测结果显示,ZmMAPKKK21蛋白与参与植物逆境胁迫相关的MAPKK3蛋白和ZIM家族蛋白发生互作,其结构与高粱(Sorghum bicolor L.)和谷子(Setaria italica L.)等高抗旱禾本科作物相比,不但在STKc_MAPKKK结构域上高度保守,且具有更加相似的二级结构和三级结构;qRT-PCR分析发现,ZmMAPKKK21基因在玉米根系中表达水平较高,干旱胁迫后该基因在根和叶中表达上调,进一步验证了ZmMAPKKK21基因的表达与干旱胁迫响应的相关性。

关键词: 玉米; MAPKKK; 生物信息学分析; 表达分析

Abstract

The mitogen-activated protein kinase (MAPK) plays an important role in the process of plants responsing to both biological and non-biological stresses. In the previous study, we excavated the potentially important drought- resistant gene ZmMAPKKK21. In this study, the ZmMAPKKK21 gene was cloned from the drought-resistant maize inbred line J24 and bioinformatics analysis was performed on the gene. The findings indicated that the ZmMAPKKK21 gene's open reading frame measured 1419 bp and encoded 472 amino acids. The protein was hydrophilic and devoid of a signal peptide. Its promoter sequence featured several cis-acting regions associated with hormones and stress. It is anticipated that the maize MAPKKK21 protein was found on the nucleus. The outcome of the protein interaction prediction indicated that ZmMAPKKK21 interacted with the plant stress- related proteins MAPKK3 and ZIM family. In addition to being extremely conservative on the STKc_MAPKKK domain, its secondary and tertiary structures are more akin to those of highly drought-resistant gramineous crops, such as sorghum (Sorghum bicolor L.) and foxtail millet (Setaria italica L.). The association between the expression of the ZmMAPKKK21 gene and the response to drought stress was further confirmed by qRT-PCR analysis, which revealed that the gene's expression level was high in maize roots and that it was up-regulated in roots and leaves following drought stress.

Keywords: Maize; MAPKKK; Bioinformatics analysis; Expression analysis

PDF (1333KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张倩, 任雯, 赵冰兵, 周秒依, 李韩帅, 刘亚, 杜何为. 玉米ZmMAPKKK21基因的克隆和生物信息学分析. 作物杂志, 2024, 40(2): 30-39 doi:10.16035/j.issn.1001-7283.2024.02.005

Zhang Qian, Ren Wen, Zhao Bingbing, Zhou Miaoyi, Li Hanshuai, Liu Ya, Du Hewei. Cloning and Bioinformatics Analysis of ZmMAPKKK21 Gene in Maize. Crops, 2024, 40(2): 30-39 doi:10.16035/j.issn.1001-7283.2024.02.005

丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)是一种高度保守的蛋白激酶,广泛存在于动物、植物和微生物等各类真核生物中[1]。植物中的MAPK级联途径由3种激酶组成,即MAPKK激酶(MAPKKK)、MAPK激酶(MAPKK)和MAP激酶(MAPK),它是真核生物中感受并且传导胁迫信号的一种重要的生理途径,在调节植物对环境的适应方面起着主导作用[2]。当植物感受外界刺激信号时,通过这3种激酶的依次磷酸化(MAPKKK→MAPKK→MAPK)进行信号传递,最终由MAPK磷酸化下游底物(包括细胞骨架蛋白、蛋白激酶和细胞凋亡因子等)调控响应基因的表达,促使植物对逆境做出反应[3-4]。MAPKKK位于MAPK级联途径的最上游,分为3种亚型,分别为Raf、MEKK和ZIK[5]。植物MAPKKK是MAPK家族中成员最多的一类,拟南芥中有80个MAPKKK,其中48个属于Raf亚型,21个属于MEKK亚型,11个属于ZIK亚型[6]。水稻中存在75个MAPKKK,这3种亚型分别含有43、22和10个成员[7]。本课题组前期对玉米中的MAPKKK家族基因进行鉴定发现玉米中共含有71个MAPKKK,其中37个为Raf亚型,26个为MEKK亚型,8个为ZIK亚型[8]。研究表明,MAPKKK基因在植物的抗逆机制中发挥着重要作用[9],苦荞中鉴定出的MAPKKK家族中FtMAPKKK8FtMAPKKK10FtMAPKKK24可积极响应干旱、高温和盐碱等非生物胁迫[10]。此外,研究[11]表明,苹果对苹果轮纹病菌的抗性受MAPKKK1和MdBSK1的互作调控。在拟南芥中过表达MAPKKK18可通过激活下游MAPKKK3途径显著增强其耐旱性[12]。通过对高粱MAPK级联基因进行分析[13],发现SbMPK14基因表现出对干旱的超敏反应,故将该基因作为一个干旱胁迫的负调控因子。上述研究表明可通过获得关键抗逆MAPKKK基因并结合转基因等手段导入作物的方法创制抗旱新种质。

玉米(Zea mays L.)是一种非常重要的粮饲兼用作物,在农业生产中占有很重要的地位。玉米在生长发育过程中极易受到外界因素的影响,而干旱由于其分布范围广、发生频率高和持续时间长的特点,是影响玉米产量的最主要因素之一[14]。基于已知参与胁迫反应和推定的耐受性基因,利用基因工程手段创制抗逆植物是一种改良作物品种的快速途径[15]。因此,分离并鉴定玉米的MAPKKK基因并研究其功能,对于玉米抗旱分子育种具有重要意义。

本实验室前期鉴定了玉米MAPKKK家族成员,并对玉米品种ZD619进行干旱胁迫下转录组测序并分析表达差异基因,发现包括ZmMAPKKK21基因在内的8个基因在干旱胁迫下出现上调表达,在玉米自交系J24、J853、X178、E28、C8605-2、200B、Q319和B73中进行干旱胁迫后发现除了干旱敏感自交系B73之外,ZmMAPKKK21基因在其余7个品种中干旱胁迫下均表达上调,一致性较高,充分说明该基因作用的广泛性;此外对于转录组测序筛选出的其他基因,例如将ZmMAPKKK26基因在多品种中进行表达分析,发现部分品种干旱处理后其表达下调,对干旱的响应程度不高,因而选择ZmMAPKKK21基因进行深入研究[16]。本试验以抗旱玉米自交系J24为材料,克隆ZmMAPKKK21基因并对其进行结构分析、启动子分析、蛋白理化性质分析、系统进化树分析、亚细胞定位预测以及互作蛋白分析,对该基因的组织表达情况进行了实时荧光定量PCR分析以及干旱处理后的基因表达分析,进一步确定了该基因是一个潜在的重要抗旱基因,为后续阐明该基因在水分胁迫下的调控机制提供理论依据。

1 材料与方法

1.1 试验材料及处理

玉米自交系J24由北京市农林科学院玉米研究所提供,试验于2022年在北京市农林科学院玉米研究所温室内进行。收集玉米自交系J24不同生长时期[出苗(VE)、三叶期(V3)、七叶期(V7)、吐丝期(R1)]的的不同组织材料(根、茎、叶、雌穗和雄穗),样品采集经液氮速冻存于-80 ℃,用于RNA提取。

对玉米自交系J24进行干旱盆栽试验。玉米幼苗正常生长至三叶一心期进行如下处理,对照组CK和处理组D用水分测量仪SM150T(Delta-T Devices,英国)将土壤含水量分别控制在16%~ 18%和8%~10%,处理14 d后进行取样,用液氮冻存于-80 ℃。

1.2 试验方法

1.2.1 引物设计与合成

根据NCBI中获得ZmMAPKKK21的全长序列以及启动子序列,设计引物用于PCR扩增,引物由北京擎科生物科技有限公司合成(表1)。

表1   引物序列及用途

Table 1  Sequences of primers and their usage

引物名称
Primer name
引物序列(5'-3')
Primer sequence (5'-3')
用途
Usage
ZmMAPKKK21-FAACGATGGAAACGGACCGAA基因克隆
ZmMAPKKK21-RTGGGAATCTTGGCGTTGACA
PZmMAPKKK21-FGTCCAACTCTGACCCTAAGCG启动子克隆
PZmMAPKKK21-RCTACCAGTTCCAGTGTCTGC
QZmMAPKKK21-FGATGCAGAGGTGGAGCAACT实时荧光
定量PCR
QZmMAPKKK21-RGTGGACGCCTGAATGCATAG
ZmGPN1-FTGACCAAGGTGAAGAGCACTGT
ZmGPN1-RCAAATCTCACGTGGCTATGAAAC

新窗口打开| 下载CSV


1.2.2 供试主要试剂

高效植物基因组DNA提取试剂盒(离心柱型)和RNAprep Pure植物总RNA提取试剂盒(离心柱型)均购自天根生化科技(北京)有限公司;PrimeScript RT reagent kit with gDNA Eraser(Perfect Real Time)反转录试剂盒以及TB Green Premix Ex TaqTM II(TIi RNaseH Pius)荧光定量PCR试剂盒购自宝日医生物技术(北京)有限公司。

1.2.3 总DNA提取以及目标基因克隆

用植物基因组DNA提取试剂盒提取玉米叶片总DNA,具体提取方法参照试剂盒说明书(高效植物基因组DNA提取试剂盒)。利用表1中设计的引物扩增目的基因,1%琼脂糖凝胶电泳检测所提取DNA的完整性。以2 µL基因组DNA为模板,采用20 µL的PCR反应体系进行PCR扩增,体系包括2× KOD one mix 10 µL,上游引物(10 µmol/L)1 µL、下游引物(10 µmol/L)1 µL,2 µL DNA模板和6 µL ddH2O。PCR反应扩增程序为94 ℃预变性2 min;98 ℃变性10 s,68 ℃退火5 s,68 ℃延伸12 s,循环34次;68 ℃修复延伸10 min。PCR扩增产物经1%琼脂糖凝胶电泳检测,并送北京擎科生物科技有限公司进行测序。

1.2.4 生物信息学分析

利用在线软件对ZmMAPKKK21基因编码蛋白进行理化性质、跨膜区域和亲疏水性分析。进行二级结构和三级结构预测,并对磷酸化位点、亚细胞定位以及互作蛋白进行预测(表2)。设计引物扩增ZmMAPKKK21基因的启动子序列,利用在线网站根据测序结果分析启动子区域的顺式作用元件和CpG岛,并利用TBtools软件对顺式作用元件在基因上的位置进行可视化处理。利用MEGA 7.0构建进化树以分析不同物种中ZmMAPKKK21基因间的同源性。

表2   生物信息学分析网址

Table 2  Bioinformatics analysis websites

功能Function网址Website
启动子分析Promoter analysishttps://bioinformatics.psb.ugent.be/webtools/plantcare/html/
保守结构域预测Prediction of conserved domainhttps://www.ncbi.nlm.nih.gov/cdd/
磷酸化位点预测Phosphorylation site predictionhttps://services.healthtech.dtu.dk/service.php?NetPhos-3.1
亲疏水性预测Hydrophilicity predictionhttps://web.expasy.org/protscale/
信号肽预测Signal peptide predictionhttps://services.healthtech.dtu.dk/service.php?SignalP-6.0
跨膜结构预测Transmembrane structure predictionhttps://services.healthtech.dtu.dk/service.php?TMHMM-2.0
理化性质预测Physical and chemical properties predictionhttps://web.expasy.org/protparam/
二级结构预测Secondary structure predictionhttps://npsapbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html
三级结构预测Three-level structure predictionhttps://swissmodel.expasy.org/
亚细胞定位Subcellular localizationhttp://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/
蛋白互作预测Protein interaction predictionhttps://cn.string-db.org/

新窗口打开| 下载CSV


1.2.5 总RNA提取与cDNA第一链合成

根据植物总RNA提取试剂盒,依据操作说明分别对玉米自交系J24组织材料进行总RNA提取。使用1%琼脂糖凝胶电泳检验提取结果,选择完整性较好、条带清晰且无降解的总RNA进行反转录。

在0.2 mL的PCR管中加入5× gDNA Eraser Buffer 2 μL,gDNA Eraser 1 μL,RNA定量1 µg,补足RNase Free dH2O至10 μL,42 ℃反应2 min。之后进行反转录反应,在去除基因组DNA反应液中加入PrimeScript RT Enzyme Mix I和RT Primer Mix各1 μL,5× PrimeScript Buffer 2(for Real Time)和RNase Free dH2O各4 μL,37 ℃反应15 min,85 ℃反应5 s,反应结束后于-20 ℃保存。

1.2.6 ZmMAPKKK21基因荧光定量PCR(qRT- PCR)分析

用Primer Premier 5.0软件设计目的基因及内参基因引物序列(表1)。qRT-PCR扩增程序如下,95 ℃预变性30 s,随后进行40个循环:95 ℃变性5 s,60 ℃退火34 s。以玉米甘油醛-3磷酸脱氢酶1(glyceraldehyde-3-phosphate deHaseN1,GPN1)为内参基因,利用2-ΔΔCt法计算出基因的相对表达量,使用软件IBM SPSS v20.0进行数据统计分析并用GraphPad Prism 8绘制图形。

2 结果与分析

2.1 玉米自交系J24 DNA提取以及ZmMAPKKK21基因克隆

提取玉米叶片总DNA凝胶电泳结果显示,提取的DNA条带清晰完整(图1a),Nanodrop 2000微量紫外分光光度计检测到DNA浓度为182.5 ng/L,OD260/280值为1.68。结果表明所提取基因组DNA浓度和纯度满足后续试验要求。

图1

图1   PCR扩增电泳图

(a) 基因组DNA电泳图,(b) ZmMAPKKK21基因全长扩增电泳图,(c) ZmMAPKKK21基因启动子扩增电泳图,M:1 kb DNA分子量标准。

Fig.1   Electrophoresis of PCR amplification

(a) Electrophoresis of genomic DNA, (b) Electrophoresis for amplification of full-length ZmMAPKKK21, (c) Electrophoresis for amplification of ZmMAPKKK21 promoter, M: 1 kb DNA marker.


PCR扩增产物电泳结果如图1b所示,在2 kb处有一条明显的扩增条带。PCR产物测序后将序列进行拼接组装,得到最终序列。测序结果表明该基因含有1个外显子,无内含子,开放阅读框长度为1419 bp,共编码472个氨基酸。

利用启动子扩增引物扩增基因ZmMAPKKK21上游2 kb的启动子区域,如图1c所示,在2~3 kb间有目的产物条带,将该产物送去测序,并拼接组装得到ZmMAPKKK21基因的启动子序列用于后续分析。

2.2 ZmMAPKKK21基因生物信息学分析

2.2.1 ZmMAPKKK21基因启动子分析

通过在线网站Plantcare(https://bioinformatics.psb.ugent.be/webtools/plantcare/html/)对ZmMAPKKK21的启动子进行顺式作用元件分析,结果(表3)显示ZmMAPKKK21基因起始密码子上游2000 bp序列中包含多种作用元件,除核心元件TATA-box与CAAT-box外,还包括光反应原件G-box、发育相关基序AAGAA、参与MeJA反应的顺式作用调节元件CGTCA-motif和TGACG-motif、参与ABA反应的顺式作用调节元件ABRE和ABRE3a、参与生长素反应的调节元件TGA-element、赤霉素响应元件GARE-motif、分生组织特异性激活响应元件CCGTCC-box、热诱导响应元件STRE以及参与防御和应激响应元件TC-rich repeats等,可视化结果见图2a。用MethPrimer在线软件对ZmMAPKKK21基因启动子进行分析可得图2b,该片段存在2个CpG岛,大小分别为232和116 bp,该区域CG的富集可能与基因的转录调控有关。

表3   ZmMAPKKK21基因启动子顺式作用元件分析

Table 3  Cis-acting element analysis of promoter of ZmMAPKKK21 gene

顺式作用元件Cis-acting element序列Sequence功能Function数量Number
ABRE,ABRE3aACGTG, CACGTGTACGTG脱落酸响应元件5
CGTCA基序,TGACG基序CGTCA-motif, TGACG-motifCGTCA, TGACG茉莉酸响应元件5
G盒G-boxTACGTG光响应元件4
GARE基序GARE-motifTCTGTTG赤霉素响应元件1
富含TC重复序列TC-rich repeatsGTTTTCTTAC参与防御和应激反应元件1
TGA元件TGA-elementAACGAC生长素响应元件1
MREAACCTAA参与光响应的MYB结合位点1
AAGAA基序AAGAA-motifgGTAAAGAAA发育相关基序1
CCAAT盒CCAAT-boxCAACGGMYBHv1结合位点1
CCGTCC盒CCGTCC-boxCCGTCC分生组织特异性激活响应元件1
STREAGGGG热诱导响应元件4
MYBCAACCA干旱响应元件1
MYCCATGTG, CATTTG干旱响应元件2

新窗口打开| 下载CSV


图2

图2   ZmMAPKKK21启动子顺式作用元件分析(a)和CpG岛分析(b)

(b) 蓝色区域为CpG岛。

Fig.2   Analysis of ZmMAPKKK21 gene promoter cis-acting elements (a) and CpG island (b)

(b) The blue region represents CpG island.


2.2.2 ZmMAPKKK21蛋白理化性质分析

利用ProtParam在线软件对ZmMAPKKK21蛋白理化性质进行分析。结果(表4)表明,ZmMAPKKK21基因编码蛋白质的氨基酸数为472,分子量49 516.58 kD,分子式C2149H3399N663O657S15,理论等电点为6.41,为酸性蛋白。带正电荷氨基酸残基总数(Lys+Arg)为53,带负电荷氨基酸残基总数(Asp+Glu)为57。脂肪系数为76.12,总平均疏水系数为-0.23。半衰期为30 h,不稳定系数42.45,根据不稳定参数值在40以下才是稳定蛋白的标准,可推测该基因编码不稳定蛋白。

表4   ZmMAPKKK21蛋白一级结构预测结果

Table 4  Prediction results of ZmMAPKKK21 protein primary structure

一级结构特征
Characteristic of primary structure
预测结果
Prediction result
氨基酸数量Number of amino acids472
等电点Isoelectric point (pI)6.41
分子量Molecular weight (kD)49 516.58
分子式Molecular formulaC2149H3399N663O657S15
正电荷残基Arg+Lys53
负电荷残基Asp+Glu57
平均疏水性Average hydrophobicity-0.23
脂肪系数Aliphatic index (AI)76.12
不稳定系数(Ⅱ) Instability coefficient (Ⅱ)42.45
半衰期Estimated half-life (h)30.00

新窗口打开| 下载CSV


运用Prot Scale工具分析ZmMAPKKK21基因编码蛋白产物的亲水性和疏水性,亲水性分析中最大峰值位于多肽链第417位的赖氨酸,对应峰值为-3.289,而疏水性分析中最大峰值位于第391位的缬氨酸,对应峰值为2.411(图3a)。由于亲水性氨基酸多于疏水性氨基酸,推测ZmMAPKKK21基因编码的蛋白质为亲水性蛋白。

图3

图3   ZmMAPKKK21蛋白理化性质分析

(a) 亲疏水性分析,(b) 信号肽预测,(c) 跨膜结构预测,(d) 磷酸化位点预测。

Fig.3   Analysis of physical and chemical properties of ZmMAPKKK21 protein

(a) Analysis of hydrophilicity and hydrophobicity, (b) Signal peptide prediction, (c) Prediction of transmembrane structure, (d) Prediction of phosphorylation sites.


利用Signal P在线软件和TMHMM在线软件对ZmMAPKKK21蛋白进行信号肽和跨膜结构预测,由图3b~c所示发现无信号肽和跨膜结构,说明ZmMAPKKK21基因编码的蛋白不属于分泌型蛋白,并且不在细胞中发生迁移。

运用NetPhos-3.1在线网站分析ZmMAPKKK21蛋白磷酸化位点,由图3d可知该蛋白可知共含有33个磷酸化位点,其中18个位于丝氨酸(Ser)残基上,14个位于苏氨酸(Thr)残基上,1个位于酪氨酸(Tyr)残基上。该蛋白的磷酸化位点主要集中在丝氨酸和苏氨酸残基上,这些残基使蛋白结构发生变化,进一步引起蛋白质活性变化,这些磷酸化氨基酸对蛋白质功能发挥有重要意义。

2.2.3 ZmMAPKKK21基因进化树构建和保守结构域分析

为了分析玉米ZmMAPKKK21蛋白的亲缘进化关系,采用MEGA7.0对该基因编码的氨基酸序列同其他18种植物蛋白氨基酸序列进行系统进化树的构建并进行保守基序分析。结果如图4所示,这些蛋白序列均有MEKK家族拥有的保守性结构域G(T/S)Px(W/F)MAPEV,以及磷酸化激活位点S/TxxxxxS/T基序。ZmMAPKKK21蛋白与谷子(Setaria italica)(SETIT_004745mg)和高粱(Sorghum bicolor)(SORBI_3003G268900)聚为一簇,具有较近的同缘关系并且均含有motif-9,由图4可以看到另一簇基序与该簇基序相比均少motif-9,猜测可能是造成同源性差异的原因。依据进化树分析结果,选取与ZmMAPKKK21蛋白同源性高的5个蛋白(水稻OSNPB_010699600、高粱SORBI_3003G268900、谷子SETIT_004745mg、拟南芥AT2G32510和AT1G05100),使用NCBI的Conserved Domain Database数据库对上述6种蛋白的氨基酸序列进行保守结构域分析,并通过TBtools处理得到可视化图形(图5)。由图5可知,这6种同源性较高的蛋白结构域中均有STKc_ MAPKKK结构域。

图4

图4   ZmMAPKKK21蛋白与其他植物MAPKKK基因编码的氨基酸序列的系统进化树

Fig.4   Phylogenetic tree of amino acid sequences encoded by ZmMAPKKK21 and MAPKKK from other plants


图5

图5   ZmMAPKKK21蛋白及其同源蛋白的保守结构域分析

Fig.5   Conserved domains analysis of ZmMAPKKK21 protein and homologous proteins


2.2.4 MAPKKK家族蛋白结构分析

利用SOPMA在线网址对上述MAPKKK家族蛋白进行二级结构预测,结果表明这些蛋白二级结构由α螺旋、不规则卷曲结构和β转角组成。其中,ZmMAPKKK21蛋白与水稻、高粱和谷子的同源蛋白中α螺旋各有193、179、167和197个,不规则卷曲结构各有186、193、204和195个,β转角各有28、30、26和21个。而拟南芥(AT2G32510和AT1G05100)蛋白中α螺旋各有143和138个,不规则卷曲各有154和130个,β转角各有18和23个。

用SWISS-MODEL对MAPKKK蛋白的三级结构进行模拟(图6),黑色箭头处表示对丝氨酸/苏氨酸蛋白激酶的催化活性起重要作用的保守氨基酸残基。结果(图6)表明,6种蛋白中均有ASP作为质子受体为主要的催化活性位点,玉米ZmMAPKKK21蛋白与水稻、高粱、谷子结构更为相似。

图6

图6   ZmMAPKKK21蛋白及其同源蛋白三级结构预测

Fig.6   The prediction of tertiary structural model of ZmMAPKKK21 protein and homologous proteins


2.2.5 亚细胞定位分析和蛋白互作分析

使用在线网址Cell-PLoc-2(http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc-2/)对ZmMAPKKK21蛋白进行亚细胞定位推测,结果(图7a)表明该蛋白最有可能定位在细胞核中。

图7

图7   亚细胞定位预测(a)和蛋白互作网络预测(b)

Fig.7   Subcellular localization prediction (a) and protein interaction prediction (b)


蛋白质互作网络(protein-protein interaction networks,PPI)是由蛋白通过彼此之间的相互作用构成,参与生物信号传递、基因表达调节、能量和物质代谢及细胞周期调控等生命过程的各个环节,因而了解和分析蛋白质的互作网络具有很重要的意义。

通过STRING (https://cn.string-db.org/) 进行蛋白质互作分析预测。结果如图7b所示, 预测ZmMAPKKK21 (GRMZM2G173965) 蛋白与MAPKK3 (GRMZM2G004468) 、 MAPKKKYODA (GRMZM2G335826) 、 ZIM18 (GRMZM2G145412) 和 ZIM10 (GRMZM2G173596) 等蛋白发生互作关系。已有研究[17]证明, 其中ZmMAPKK3可参与植物的渗透胁迫和ABA信号转导, 是一种正调控因子。 ZIM转录因子家族在玉米中有相关研究[18]表明, ZIM4和ZIM31可被干旱胁迫诱导表达, 此外ZIM4还可在病原菌感染后表达上调。 根据预测结果, ZmMAPKKK21蛋白可能参与植物的多种逆境胁迫。

2.3 实时荧光定量PCR(qRT-PCR)表达分析
2.3.1 ZmMAPKKK21基因表达模式分析

应用qRT-PCR技术分析ZmMAPKKK21基因在不同时期中不同组织的表达量(记VE根的表达量为1),结果如图8所示,在玉米自交系J24不同组织(根、茎、叶、雌穗和雄穗)以及不同时期(VE、V3、V7和R1)中均检测到ZmMAPKKK21基因的表达,但在各组织中的表达量不同。其中,在R1的根中表达量最高,其次是茎,在VE、V3和V7根中表达量明显高于其他组织,在雌穗和雄穗中表达量较低。

图8

图8   ZmMAPKKK21基因在各器官的相对表达量

R:根,L:叶,S:茎。

Fig.8   Relative expression of ZmMAPKKK21 gene in various organs

R: root, L: leaf, S: stem.


2.3.2 干旱胁迫对ZmMAPKKK21基因表达的影响

干旱胁迫后ZmMAPKKK21基因在根和叶中的表达结果如图9所示,记正常水分处理的叶片中ZmMAPKKK21基因表达量为1,与CK相比,干旱处理后,ZmMAPKKK21基因在叶片和根中表达量均显著升高。

图9

图9   干旱胁迫下ZmMAPKKK21基因在根、叶组织中的的表达

“**”代表P < 0.01水平上的显著性差异。

Fig.9   Expression of ZmMAPKKK21 gene in roots and leaves under drought stress

“**”represents significant differences at the level of P < 0.01.


3 讨论

MAPK级联途径是植物在胁迫中发挥重要作用的信号途径[19]。该途径最上游的MAPKKK基因起到感知刺激信号并将其级联放大的重要作用,从而在植物抗逆中受到广泛研究,越来越多关于各类植物中关键抗逆MAPKKK基因功能的研究报道,但玉米中的相关基因鲜见报道[20-21]

前期研究[16]发现,ZmMAPKKK21基因在干旱胁迫下表达显著上调。本研究[12]从抗旱性强玉米自交系J24中克隆出该基因,分析结果表明该基因属于MAPKKK家族中的MEKK亚型,与多种作物含有相同的结构域STKc_MAPKKK,揭示该结构域在MAPKKK家族中具有保守性,可能在多种作物MAPKKK家族中均发挥重要作用。

此外,本研究发现,ZmMAPKKK21蛋白与高粱和谷子等抗旱性强的单子叶植物具有较近的亲缘关系,且二级结构和三级结构与高粱、谷子这2种作物中的同源蛋白结构更为相似[22-23],提示该基因可能在抗旱作物中广泛存在。对该基因的启动子区域分析结果显示其包含多种与逆境胁迫有关的顺式作用元件(如干旱响应元件MYB、MYC),同时含有许多激素响应元件(如ABA、IAA和GA),均表明该基因与参与逆境调控高度相关。

已报道的AtMAPKKK18是ZmMAPKKK21在拟南芥中的同源蛋白,有研究[12]表明该基因参与ABA调控的植物对干旱胁迫的响应,研究中还鉴定出一条参与拟南芥干旱胁迫响应的MAPK级联途径,AtMAPKKK18可磷酸化下游AtMAPKK3。本研究中分析预测ZmMAPKKK21可能与ZmMAPKK3蛋白发生互作,拟南芥中AtMAPKK3经过研究发现在干旱胁迫响应中发挥了正调控作用,但转录水平并不受ABA的诱导,而ZmMAPKK3研究证实受干旱胁迫和ABA的调控[17],ZmMAPKKK21蛋白与ZmMAPKK3是否互作以及可能存在的进化通路还需进一步的研究。

ZmMAPKKK21基因在不同组织中的表达量检测结果显示,该基因在R1期的根、茎以及V3期根中较其他组织中表达量较高,与小麦[24]、番茄[25]和拟南芥[26]中的组织特异性表达结果一致,说明ZmMAPKKK21基因主要在根组织中表达。对ZmMAPKKK21基因在干旱胁迫下进行表达分析,结果表明该基因可上调表达以响应干旱胁迫。此外,我们进行差异表达分析的品种本身在抗旱性上存在差异,研究[27-28]发现在这些农艺性状各异的材料中,在水分胁迫下该基因表达更高的品种,抗旱性更为突出。植物根系是植物从环境中吸收水分和养分的主要器官,在轻度干旱胁迫下,玉米植株的根系变长以求获得更多的水分吸收,而在严重干旱下根长变短以致活力丧失[29]。在试验证明ZmMAPKKK21基因在根系中高表达并积极响应干旱胁迫,但具体功能和作用模式还需要进一步验证。本文为进一步研究玉米抗旱相关基因ZmMAPKKK21的分子机理,并利用生物技术手段创制抗旱玉米新材料奠定基础。

4 结论

本研究基于前期数据挖掘筛选得到干旱胁迫下差异表达基因ZmMAPKKK21,从抗旱性强玉米自交系J24中克隆出该基因并对其进行了生物信息学分析,发现该基因属于MAPKKK家族MEKK亚系,且在启动子序列区含有多种与逆境胁迫相关的顺式作用元件,亲缘关系与高粱和谷子较近,且该基因在根中特异性高表达,并积极响应干旱胁迫,进一步验证了该基因在抗旱中潜在的重要作用。

参考文献

周秒依, 任雯, 赵冰兵, .

植物MAPK级联途径应答的非生物胁迫研究进展

中国农业科技导报, 2020, 22(2):22-29.

DOI:10.13304/j.nykjdb.2019.0737      [本文引用: 1]

促分裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)是一种高度保守的蛋白激酶,广泛存在于真核生物中。MAPK级联途径是一种重要的高度保守的细胞信号转导途径,主要包括MAPKKK、MAPKK和MAPK三种蛋白激酶,通过磷酸化顺序被激活。MAPK级联途径参与了植物生长发育、激素调节、生物胁迫以及非生物胁迫的应答响应。从植物MAPK级联途径成员的分类、结构特征及对非生物胁迫的响应等方面进行了综述,将为系统的理解植物MAPK级联途径及其在非生物逆境胁迫下的表达调控等提供参考。

Zhang M M, Zhang S Q.

Mitogen-activated protein kinase cascades in plant signaling

Journal of Integrative Plant Biology, 2022, 64(2):301-341.

DOI:10.1111/jipb.13215      [本文引用: 1]

Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive either endogenously produced stimuli such as peptide ligands and damage-associated molecular patterns (DAMPs) or exogenously originated stimuli such as pathogen/microbe-associated molecular patterns (P/MAMPs), pathogen-derived effectors, and environmental factors. In this review, we provide a historic view of plant MAPK research and summarize recent advances in the establishment of MAPK cascades as essential components in plant immunity, response to environmental stresses, and normal growth and development. Each tier of the MAPK cascades is encoded by a small gene family, and multiple members can function redundantly in an MAPK cascade. Yet, they carry out a diverse array of biological functions in plants. How the signaling specificity is achieved has become an interesting topic of MAPK research. Future investigations into the molecular mechanism(s) underlying the regulation of MAPK activation including the activation kinetics and magnitude in response to a stimulus, the spatiotemporal expression patterns of all the components in the signaling pathway, and functional characterization of novel MAPK substrates are central to our understanding of MAPK functions and signaling specificity in plants.

Xu J, Zhang S Q.

Mitogen-activated protein kinase cascades in signaling plant growth and development

Trends in Plant Science, 2015, 20(1):56-64.

DOI:10.1016/j.tplants.2014.10.001      PMID:25457109      [本文引用: 1]

Mitogen-activated protein kinase (MAPK) cascades are ubiquitous signaling modules in eukaryotes. Early research of plant MAPKs has been focused on their functions in immunity and stress responses. Recent studies reveal that they also play essential roles in plant growth and development downstream of receptor-like protein kinases (RLKs). With only a limited number of MAPK components, multiple functional pathways initiated from different receptors often share the same MAPK components or even a complete MAPK cascade. In this review, we discuss how MAPK cascades function as molecular switches in response to spatiotemporal-specific ligand-receptor interactions and the availability of downstream substrates. In addition, we discuss other possible mechanisms governing the functional specificity of plant MAPK cascades, a question central to our understanding of MAPK functions. Copyright © 2014 Elsevier Ltd. All rights reserved.

Zhang M M, Su J B, Zhang Y, et al.

Conveying endogenous and exogenous signals: MAPK cascades in plant growth and defense

Current Opinion in Plant Biology, 2018, 45:1-10.

DOI:S1369-5266(17)30213-3      PMID:29753266      [本文引用: 1]

Mitogen-activated protein kinase (MAPK) cascades are key signaling modules downstream of receptors/sensors that perceive endogenous and exogenous stimuli such as hormones, peptide ligands, and pathogen-derived patterns/effectors. In this review, we summarize recent advances in the establishment of MAPK cascades as unified signaling modules downstream of receptor-like kinases (RLKs) and receptor-like proteins (RLPs) in plant growth and defense, the identification of components connecting the RLK/RLP receptor complexes to the MAPK cascades, and the interactions between MAPK and hormone signaling pathways. We also propose a set of criteria for defining the physiological substrates of plant MAPKs. With only a limited number of MAPK components, multiple functional pathways often share the same MAPK cascade. As a result, understanding the signaling specificity, which requires detailed information about the spatiotemporal expression of the components involved, their complex formation, and the consequence of substrate phosphorylation, is central to our study of MAPK functions.Copyright © 2018 Elsevier Ltd. All rights reserved.

Liu D D, Zhu M, Hao L L, et al.

GhMAPKKK49, a novel cotton (Gossypium hirsutum L.) MAPKKK gene, is involved in diverse stress responses

Acta Physiologiae Plantarum, 2016, 38(1):13.

DOI:10.1007/s11738-015-2029-y      URL     [本文引用: 1]

Jonak C, Okresz L, Bogre L, et al.

Complexity,cross talk and integration of plant MAP kinase signalling

Current Opinion in Plant Biology, 2002, 5(5):415-424.

DOI:10.1016/S1369-5266(02)00285-6      URL     [本文引用: 1]

Rao K P, Richa T, Kumar K, et al.

In silico analysis reveals 75 members of mitogen-activated protein kinase kinase kinase gene family in rice

DNA Research, 2010, 17(3):139-153.

DOI:10.1093/dnares/dsq011      PMID:20395279      [本文引用: 1]

Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries.

刘晨, 曹小汉, 殷丹丹, .

MAPK信号通路调控植物响应非生物胁迫的研究进展

安徽农业科学, 2022, 50(18):9-16.

[本文引用: 1]

Moustafa K.

Improving plant stress tolerance: potential applications of engineered MAPK cascades

Trends in Biotechnology, 2014, 32(8):389-390.

DOI:10.1016/j.tibtech.2014.06.005      PMID:24986255      [本文引用: 1]

The need to develop solutions to the problem of worldwide food crop scarcity under exacerbated climate change will be paramount. This motivates an effort to leverage agricultural biotechnology to improve plant adaptation to severe and multiple, simultaneous environmental stresses. Consequently, engineering synthetic signaling pathways, particularly mitogen activated protein kinase (MAPK) cascades utilizing components already involved in plant stress tolerance, is a worthy focus for research to breed new plant varieties with enhanced stress-tolerance traits. Copyright © 2014 Elsevier Ltd. All rights reserved.

Zhen W, Song Y, Ren W C, et al.

Genome-wide identification of MAPK, MAPKK, and MAPKKK gene families in Fagopyrum tataricum and analysis of their expression patterns under abiotic stress

Frontiers in Genetics, 2022, 13:894048.

DOI:10.3389/fgene.2022.894048      URL     [本文引用: 1]

The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signal transduction pathway, ubiquitous in eukaryotes, such as animals and plants. The MAPK cascade has a dominant role in regulating plant adaptation to the environment, such as through stress responses, osmotic adjustment, and processes that modulate pathogenicity. In the present study, the MAPK cascade gene family was identified in Fagopyrum tataricum (Tartary buckwheat), based on complete genome sequence data. Using phylogenetic tree, conservative motif, and chromosome location analyses, a total of 65 FtMAPK cascade genes, distributed on five chromosomes, were classified into three families: MAPK (n = 8), MAPKK (n = 1), and MAPKKK (n = 56). Transcriptome data from Tartary buckwheat seedlings grown under different light conditions demonstrated that, under blue and red light, the expression levels of 18 and 36 FtMAPK cascade genes were up-regulated and down-regulated, respectively. Through qRT-PCR experiments, it was observed that FtMAPK5, FtMAPKK1, FtMAPKKK8, FtMAPKKK10, and FtMAPKKK24 gene expression levels in the Tartary buckwheat seedlings increased under three types of abiotic stress: drought, salt, and high temperature. A co-expression network of FtMAPK cascade genes was constructed, based on gene expression levels under different light conditions, and co-expressed genes annotated by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses, which identified numerous transcription factors related to plant abiotic stress. The authors conclude that FtMAPK cascade genes have important roles in the growth and development of Tartary buckwheat, as well as its responses to abiotic stress.

Wang N, Liu Y S, Dong C H, et al.

MdMAPKKK1 regulates apple resistance to Botryosphaeria dothidea by interacting with MdBSK1

International Journal of Molecular Sciences, 2022, 23(8):4415.

DOI:10.3390/ijms23084415      URL     [本文引用: 1]

Plant MAPK cascade performs a critical role in the regulation of plant immunity and disease resistance. Although the function of MAPK cascade in immunity regulation is partially conserved between different species, the mechanism varies in different host and pathogen combinations. To date, the MAPK cascade function of woody plants in the regulation of disease resistance has seldom been reported. Here, we present evidence to show that apple MdMAPKKK1 performed an important role in the regulation of apple resistance to Botryosphaeria dothidea, the causal agent of apple ring rot. B. dothidea infection leads to enhanced MdMAPKKK1 expression and MAPK cascade activation, indicating that the MAPK cascade is involved in the defense against B. dothidea. MdMAPKKK1 overexpression-induced pathogen-independent cell death. MdMAPKKK1 silencing decreases the resistance of apple calli and fruits to B. dothidea. Further analysis indicates that MdMAPKKK1 can bind MdBSK1 and is likely phosphorylated by it. The MdBSK1-mediated phosphorylation of MdMAPKKK1 is important for resistance to B. dothidea. These results collectively indicate that apple resistance to B. dothidea is regulated by the interaction between MAPKKK1 and MdBSK1.

Li Y Y, Cai H X, Liu P, et al.

Arabidopsis MAPKKK18 positively regulates drought stress resistance via downstream MAPKK3

Biochemical and Biophysical Research Communications, 2017, 484(2):292-297.

DOI:10.1016/j.bbrc.2017.01.104      URL     [本文引用: 3]

Zhou M Y, Zhao B B, Han S L, et al.

Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation

Genomics, 2022, 114(2):110311.

DOI:10.1016/j.ygeno.2022.110311      URL     [本文引用: 1]

Daryanto S, Wang L, Jacinthe P A.

Global synthesis of drought effects on maize and wheat production

PLoS ONE, 2017, 11(5):e0156362.

DOI:10.1371/journal.pone.0156362      URL     [本文引用: 1]

Rai M K, Kalia R K, Singh R, et al.

Developing stress tolerant plants through in vitro selection—An overview of the recent progress

Environmental and Experimental Botany, 2011, 71(1):89-98.

DOI:10.1016/j.envexpbot.2010.10.021      URL     [本文引用: 1]

Liu Y, Zhou M Y, Gao Z X, et al.

RNA-Seq analysis reveals MAPKKK family members related to drought tolerance in maize

PLoS ONE, 2015, 10(11):e0143128.

DOI:10.1371/journal.pone.0143128      URL     [本文引用: 2]

Zhang M Y, Pan J W, Kong X D, et al.

ZmMKK3, a novel maize group B mitogen-activated protein kinase kinase gene, mediates osmotic stress and ABA signal responses

Journal of Plant Physiology, 2012, 169(15):1501-1510.

DOI:10.1016/j.jplph.2012.06.008      PMID:22835533      [本文引用: 2]

Mitogen-activated protein kinase (MAPK) cascades are important intracellular signaling modules and function as a convergent point for crosstalk during abiotic stress signaling. In this article, we isolated a novel group B MAPKK gene, ZmMKK3, from Zea mays. ZmMKK3 protein might be localized in both the cytoplasm and the nucleus. RNA blot analysis indicated that the ZmMKK3 transcription was up-regulated by abscisic acid (ABA), hydrogen peroxide (H(2)O(2)) and PEG, and that H(2)O(2) mediated PEG-induced expression of ZmMKK3. Constitutive expression of ZmMKK3 in Nicotiana tabacum reduced H(2)O(2) accumulation under osmotic stress by affecting antioxidant defense systems and alleviated reactive oxygen species-mediated injury under oxidative stress. Transgenic tobacco exhibited attenuated ABA sensitivity by means of an increased germination rate and main root growth. Taken together, these results indicate that ZmMKK3 is a positive regulator of osmotic tolerance and ABA signaling in plants.Copyright © 2012 Elsevier GmbH. All rights reserved.

Zhang Z B, Li X L, Yu R, et al.

Isolation,structural analysis, and expression characteristics of the maize TIFY gene family

Molecular Genetics and Genomics, 2015, 290(5):1849-1858.

DOI:10.1007/s00438-015-1042-6      URL     [本文引用: 1]

Lin L, Wu J, Jiang M, et al.

Plant mitogen-activated protein kinase cascades in environmental stresses

International Journal of Molecular Sciences, 2021, 22(4):1543.

DOI:10.3390/ijms22041543      URL     [本文引用: 1]

Due to global warming and population growth, plants need to rescue themselves, especially in unfavorable environments, to fulfill food requirements because they are sessile organisms. Stress signal sensing is a crucial step that determines the appropriate response which, ultimately, determines the survival of plants. As important signaling modules in eukaryotes, plant mitogen-activated protein kinase (MAPK) cascades play a key role in regulating responses to the following four major environmental stresses: high salinity, drought, extreme temperature and insect and pathogen infections. MAPK cascades are involved in responses to these environmental stresses by regulating the expression of related genes, plant hormone production and crosstalk with other environmental stresses. In this review, we describe recent major studies investigating MAPK-mediated environmental stress responses. We also highlight the diverse function of MAPK cascades in environmental stress. These findings help us understand the regulatory network of MAPKs under environmental stress and provide another strategy to improve stress resistance in crops to ensure food security.

Komis G, Šamajov O, Ovečka M, et al.

Cell and developmental biology of plant mitogen-activated protein kinases

Annual Review of Plant Biology, 2018, 69(1):237-265.

DOI:10.1146/arplant.2018.69.issue-1      URL     [本文引用: 1]

Zi S, Zhao B B, Wei S, et al.

Genome-wide identification and characterization of the MAPKKK, MKK, and MPK families in Chinese elite maize inbred line Huangzaosi

The Plant Genome, 2022, 15(3):e20216.

DOI:10.1002/tpg2.v15.3      URL     [本文引用: 1]

卢峰, 张飞, 段有厚.

干旱胁迫对高粱苗期物质生产及生理特性的影响

作物杂志, 2015(2):149-153.

[本文引用: 1]

于国红, 刘朋程, 郝洪波, .

不同基因型谷子对干旱胁迫的调控机制

植物营养与肥料学报, 2022, 28(1):157-167.

[本文引用: 1]

Wang M, Yue H, Feng K W, et al.

Genome-wide identification, phylogeny and expressional profiles of mitogen activated protein kinase kinase kinase (MAPKKK) gene family in bread wheat (Triticum aestivum L.)

BMC Genomics, 2016, 17(1):668.

DOI:10.1186/s12864-016-2993-7      URL     [本文引用: 1]

Wu J, Wang J, Pan C T, et al.

Genome-wide identification of MAPKK and MAPKKK gene families in tomato and transcriptional profiling analysis during development and stress response

PLoS ONE, 2014, 9(7):e103032.

DOI:10.1371/journal.pone.0103032      URL     [本文引用: 1]

李媛媛. AtMAPKKK18调节干旱胁迫抗性的分子机理研究. 泰安: 山东农业大学, 2016.

[本文引用: 1]

王芳, 彭云玲, 方永丰, .

花后干旱胁迫对不同持绿型玉米叶片衰老的影响

水土保持通报, 2018, 38(4):60-66.

[本文引用: 1]

陆兰姣, 王治红.

探讨玉米自交系苗期耐旱性差异分析

农业与技术, 2016, 36(2):7,29.

[本文引用: 1]

许璐璐, 王涵, 高盼盼, .

环境胁迫对植物根系形态的影响

安徽农业科学, 2020, 48(14):16-19.

[本文引用: 1]

/