铁肥施用对绿豆产量和籽粒含铁量的影响
The Effects of Iron Fertilizer Application on Yield and Fe Concent of Grains in Mung Bean
通讯作者:
收稿日期: 2023-04-4 修回日期: 2023-10-10 网络出版日期: 2023-11-10
基金资助: |
|
Received: 2023-04-4 Revised: 2023-10-10 Online: 2023-11-10
作者简介 About authors
郝青婷,研究方向为食用豆育种及栽培技术,E-mail:
绿豆作为一种重要的药食同源作物,单产水平较低,施用铁肥可提高植株的光合作用,进而提高绿豆产量和品质。设置2种铁肥施用方式(基施,B1;80%基施+20%喷施,B2)搭配4种铁肥施用量(0、250、500和750 kg/hm2,分别以CK、A1、A2和A3表示)的处理试验,研究对绿豆光合作用参数、产量及其相关指标和绿豆籽粒含铁量的影响。 结果表明,与CK相比,A3处理绿豆植株的叶绿素含量、叶绿素荧光参数、产量相关指标(株高、荚长、单株荚数、百粒重、籽粒产量、生物产量)及籽粒含铁量均显著提高。与B1方式相比,B2方式对光合系统Ⅱ实际光化学效率[Y(Ⅱ)]、光合电子传递速率(ETR)和籽粒含铁量有显著影响。因此,本研究认为750.00 kg/hm2的铁肥搭配80%基施+20%喷施能显著提高绿豆的产量和籽粒品质。
关键词:
Mung bean, as an important food-medicine homologous crop, has a low yield per unit area. Applying iron fertilizer can improve the photosynthesis of mung bean plants and further improve its yield and quality. In this study, two application modes of iron fertilizer (basal application, B1; 80% basal application+20% spraying, B2) were set in field with four application amounts of iron fertilizer (0, 250, 500, 750 kg/ha, represented by CK, A1, A2, A3, respectively). The effects of different treatments on photosynthesis parameters, yield and its related indexes and iron content of grains were studied. The results showed that compared with CK, the chlorophyll content, chlorophyll fluorescence parameters, yield-related indexes (plant height, pod length, pod number per plant, 100-grains weight, grain yield, biological yield) and grain Fe content of mung bean were significantly increased with A3 treatment. Compared with B1 mode, the actual photochemical efficiency [Y(Ⅱ)], photosynthetic electron transport rate (ETR) and grain Fe content were significantly affected by the B2 mode. Therefore, this study concluded that 750 kg/ha iron fertilizer combined with 80% base application+20% spray application could significantly improve the yield and grain quality of mung bean.
Keywords:
本文引用格式
郝青婷, 高伟, 张泽燕, 闫虎斌, 朱慧珺, 张耀文.
Hao Qingting, Gao Wei, Zhang Zeyan, Yan Hubin, Zhu Huijun, Zhang Yaowen.
绿豆(Vigna radiata L.)是豆科(Leguminosae)豇豆属(Vigna)的一年生自花授粉作物,在我国有悠久的栽种及食用历史,是我国传统的出口农产品[1]。绿豆原产东南亚地区,我国也处于起源中心,作为绿豆主产区,我国绿豆种植面积和总产量居世界第2位[2]。绿豆种子中富含蛋白质、维生素和矿质元素,可作为人们饮食中植物蛋白的重要来源,2009-2010年度,巴基斯坦绿豆的消耗量达到了其全国食用豆消耗总量的16%[3]。此外,绿豆还具有丰富的膳食纤维及黄酮类、萜类等生物活性物质,有改善“三高”、提高人体免疫力、延缓人体衰老等功能,是一种药食兼用的功能性杂粮作物[4⇓⇓-7]。绿豆生育期短、适播期长、适应性广、耐旱耐瘠薄,具有根瘤固氮、培肥、改良土壤的能力,是间作套种的适宜作物和良好的前茬作物[8]。因此,在丰富人们膳食、调整种植结构与提高山区丘陵地区农民收入中具有重要作用[9]。山西作为绿豆主产区之一,种植规模大,品种资源多,品质好,抗逆性强,但单产水平偏低,因此亟需优良绿豆品种和配套的栽培措施使山西省的绿豆产出再上一个台阶,提升绿豆产业的综合竞争力[10]。
铁(Fe)在植物微量元素中需求量最大,直接或间接地参与植物光合作用、呼吸作用和氧化还原反应等多种生理代谢过程[11-12]。缺铁会导致叶绿素合成受阻,前期叶脉褪色,叶肉呈现浅绿色,重度缺铁时,叶片黄化,甚至变白,叶绿素合成停止,生物量大幅下降,造成农作物产量和品质降低,给农业生产带来极大的经济损失[13-14]。铁元素的吸收主要依靠植物从土壤中获取,自然界土壤中全铁含量虽高,但大部分以稳定的Fe3+形式存在,在中性和碱性土壤中的溶解性极低,从而限制了植物从土壤中有效地吸收铁元素,这是植物缺绿症的根源所在[15]。目前,提升作物铁吸收能力有2种手段,一是育种手段,通过基因工程技术改良作物铁吸收转运系统,提高其铁吸收利用效率,进而促进作物增收及育成高铁含量品种[16];二是经栽培措施提高作物对铁的吸收,进而提高铁含量和作物的产量[12,17]。山西省土壤有效铁含量普遍较低,提高作物铁吸收转运具有重要意义[18]。已有研究[19]表明,通过调节环境中的外源铁量可明显促进作物吸收和转运铁元素,改善作物产量和品质。但在生产中,相关研究主要聚焦于园艺作物及小麦、水稻等大宗粮食作物上,铁肥对绿豆的产量和品质影响等方面的应用研究较少,因此,本研究以绿豆品种并绿21号为材料,探究不同铁肥施用方式搭配不同铁肥用量对绿豆光合作用、产量及其相关指标、籽粒含铁量的影响,探索促进绿豆高产的铁肥用法,为绿豆产业的可持续发展提供参考。
1 材料与方法
1.1 试验地概况
试验于2021年在山西农业大学东阳试验示范实训基地(120°14′ E,29°16′ N)进行,平均海拔799.40 m,年均气温9.70 ℃,年均降水量440.70 mm,有效积温3675.00 ℃(≥10.00 ℃),年均日照时数2662 h,无霜期平均158 d,属典型的暖温带半湿润大陆性季风气候。试验田地势平坦,为沙质壤土,植株种植前取耕层土壤并检测含铁量,土壤有效含铁量为1.43 mg/kg,参照山西省土壤有效态微量元素丰缺指标(1992),铁≤2.50 mg/kg为缺,因此试验土地为缺铁状态,适宜进行该试验。
1.2 试验材料
以绿豆品种并绿21号为材料,其由山西农业大学农学院(山西农业科学院作物科学研究所)杂粮育种实验室育成。
1.3 试验设计
供试肥料为FeSO4·7H2O(纯度≥90%),喷施铁肥的浓度为0.01%。
本试验中铁肥施用量包括4个水平,分别为0(CK)、250(A1)、500(A2)、750(A3)kg/hm2,铁肥施用方式2种,分别为所有铁肥均作为基肥播种前施入(B1)、80%的铁肥作为基肥播种前施入+20%的铁肥结荚初期以叶面喷洒的方式施入(B2)。铁肥施用方式作为主要因素,施用量为次要因素。采用随机区组设计,3次重复,每个小区面积为10 m2(2 m×5 m)。
种植前灌溉并深耕,将基施的铁肥以行侧开沟的形式施入,于5月23日播种,花期前将喷施的铁肥施入,期间小区间苗、中耕、灌溉、病虫害防治等栽培管理措施一致,采取当地种植习惯统一管理。
1.4 测定项目与方法
使用CCM-300叶绿素含量测量仪测定叶绿素含量,另使用OS-5p+便携式脉冲调制叶绿素荧光分析仪测定相应叶绿素荧光参数指标,包括初始荧光(Fo)、照射饱和脉冲后的(Fm)、实际光化学效率[Y(Ⅱ)]、光合电子传递速率(ETR);收获前每个小区随机选取3~5株长势一致的绿豆植株测定其株高、单株荚数、单荚粒数和荚长;全区收获后晾干,测定小区的生物产量、籽粒产量及百粒重;挑选均匀一致的绿豆种子检测籽粒含铁量。
1.5 数据处理
采用Excel和SPSS软件整理数据,检验数据的方差齐性和残差正态性分布情况并进行方差分析。
2 结果与分析
2.1 铁肥施用对绿豆叶片叶绿素含量的影响
结果表明,处理间数据满足方差齐性,且满足均值为0的正态性分布。单方差分析(One-ANOVA)对叶片叶绿素含量的分析结果(图1)表明,随着铁肥施用量的增加,叶片叶绿素含量随之增加,当铁肥施用量为750 kg/hm2时,叶片叶绿素含量达到1172 mg/m2;当施用量为250和500 kg/hm2时,B1和B2施用方式变化极显著(P<0.01),后者对叶片叶绿素含量提高更为显著,当施肥量为750 kg/hm2时,2种施肥方式检测到的叶片叶绿素含量并无明显差别。
图1
图1
铁肥施用对绿豆叶片叶绿素含量的影响
不同大写字母表示处理间差异达极显著水平(P < 0.01),下同。
Fig.1
The effects of iron fertilizer application on chlorophyll content in mung bean leaves
Different capital letters indicate extremely significant difference between treatments (P < 0.01), the same below.
2.2 铁肥施用对绿豆叶片叶绿素荧光参数的影响
采用ANOVA分析得到绿豆叶片的光合作用荧光参数(表1),随着铁肥施用量的增加,光合系统(PS Ⅱ)最大光化学效率(Fv/Fm)、PS Ⅱ潜在光化学活性(Fv/Fo)、Y(Ⅱ)和ETR整体呈上升趋势,当施肥量为750 kg/hm2时,与CK相比,4个荧光参数指标的提升达到极显著水平(P<0.01)。不同施肥方式对Fv/Fm、Fv/Fo、Y(Ⅱ)和ETR的影响不大,组间变化并不明显,但当施肥量为750 kg/hm2时,B1、B2施肥方式对Y(Ⅱ)和ETR产生了显著的影响(P<0.05),且后者明显提高了Y(Ⅱ)和ETR。
表1 铁肥施用对绿豆叶片光合荧光参数的影响
Table 1
处理 Treatment | Fv/Fm | Fv/Fo | Y(Ⅱ) | ETR |
---|---|---|---|---|
CK | 0.68±0.03e | 3.03±0.21b | 0.37±0.02c | 100.41±7.86d |
A1B1 | 0.72±0.02d | 3.10±0.36b | 0.41±0.04bc | 97.20±10.56d |
A1B2 | 0.73±0.01cd | 3.16±0.46b | 0.43±0.05b | 109.98±7.12d |
A2B1 | 0.74±0.01bc | 3.43±0.39b | 0.44±0.04b | 123.68±10.92c |
A2B2 | 0.75±0.00abc | 3.47±0.69b | 0.44±0.03b | 134.96±9.12ab |
A3B1 | 0.76±0.01ab | 4.26±0.83a | 0.45±0.03b | 140.07±11.40b |
A3B2 | 0.77±0.02a | 4.30±0.71a | 0.50±0.06a | 153.08±13.35a |
不同小写字母表示处理间差异达显著水平(P < 0.05),下同。
Different lowercase letters indicate significant differences between treatments (P < 0.05), the same below.
2.3 铁肥施用对绿豆产量相关指标的影响
采用ANOVA分析铁肥施用对株高、荚长等产量相关指标的影响,结果见表2,铁肥施用对产量指标单荚粒数的影响不显著,但对株高、荚长、单株荚数、百粒重、籽粒产量和生物产量这6个产量相关指标有显著影响(P<0.05)。随着施肥量的增加,所有产量相关指标随之增加,铁肥施用量为750 kg/hm2时,各指标达到最大值;当铁肥施用量相同时,B1和B2施肥方式检测到的产量相关指标之间差异并不显著(P>0.05)。
表2 铁肥施用对绿豆形态及产量指标的影响
Table 2
处理 Treatment | 株高 Plant height (cm) | 荚长 Pod length (cm) | 单株荚数 Pod number per plant | 单荚粒数 Seed number per pod | 百粒重 100-grain weight (g) | 籽粒产量 Grain yield (kg/hm2) | 生物产量 Biological yield (kg/hm2) |
---|---|---|---|---|---|---|---|
CK | 41.76±1.38cd | 11.67±0.34bc | 16.44±0.96c | 11.67±0.67a | 7.10±0.06b | 1002.15±5.87c | 3243.30±42.86c |
A1B1 | 40.82±1.35d | 11.49±0.14c | 17.11±1.65c | 11.00±1.00a | 7.74±0.17a | 1167.75±16.75bc | 3359.10±44.92c |
A1B2 | 43.58±1.45cd | 11.71±0.17bc | 18.44±0.84c | 11.56±1.39a | 7.86±0.13a | 1153.80±16.47bc | 3688.65±23.76bc |
A2B1 | 44.87±1.87bc | 12.29±0.07ab | 19.52±0.95c | 11.76±0.97a | 7.65±0.29a | 1230.00±16.93abc | 3842.25±37.55bc |
A2B2 | 47.62±2.27b | 12.44±0.47a | 20.67±0.88bc | 11.11±1.02a | 7.59±0.18a | 1241.70±3.85abc | 3919.95±12.04abc |
A3B1 | 51.28±0.40a | 12.71±0.76a | 24.44±3.79ab | 11.44±0.51a | 7.76±0.32a | 1598.85±15.29ab | 5021.40±33.12ab |
A3B2 | 52.61±2.88a | 12.81±0.34a | 26.56±4.44a | 12.22±0.09a | 7.59±0.26a | 1448.40±27.15a | 4639.05±86.46a |
2.4 铁肥施用对绿豆籽粒含铁量的影响
不同铁肥施用量搭配不用的施用方式对绿豆籽粒中的含铁量产生了极显著的影响,与CK相比,除A1B1处理组外,别的处理籽粒含铁量均显著升高(P<0.01),说明铁肥施用可有效提升绿豆籽粒含铁量;且当施肥量为750 kg/hm2,搭配基施+喷施的方案时,绿豆籽粒含铁量显著(P<0.01)高于其他处理,为72.80 mg/kg(图2)。
图2
图2
铁肥施用对绿豆籽粒含铁量的影响
Fig.2
The effects of iron fertilizer application on iron content in mung bean grains
3 讨论
植物中80%的铁富集在叶绿体中,参与叶绿素合成,铁是光合电子传递中一系列色素复合体、蛋白及酶的重要组成成分。在草莓[20]、番茄[21]等研究中发现,施用铁肥有利于叶绿素形成、提高叶片光合效率和果实品质,促进植株体内营养元素积累。研究[22⇓-24]发现,土壤、叶面施用铁肥均可有效提高小麦、大豆、水稻等作物植株中铁元素的含量,也有研究[15,23]认为,叶面喷施铁肥可有效提高作物收获部位铁元素含量。本研究结果发现,铁肥不仅显著提升叶绿素含量及光合作用参数,而且种子中含铁量与对照相比也极显著增加,随着施肥量增加改善作用更加明显。铁肥通过影响叶绿素含量及光合作用,最终造成作物产量的变化,研究[25-26]表明,叶面喷施铁肥能改善稻米品质,同时能提高水稻产量及其构成要素(单株穗数、穗粒数、千粒重)。在番茄[27]、白菜[28]中施用铁肥会促进作物吸收土壤中的有效养分,从而显著提高作物产量。本研究通过3个水平铁肥的施用发现,随着施肥量的增长,籽粒产量随之增加,株高、荚长、单株荚数、百粒重等产量相关指标与未施肥处理相比均显著提升,当施肥量达到750 kg/hm2时,各指标的增长达到极显著水平,即硫酸亚铁肥的施用可以明显提高绿豆植株的产量。本试验设置了2种施肥方式B1和B2,肥料直接通过喷雾方式施至叶面,吸收更直接快速,避免了从根部向叶片的长距离运输,作用效果应更好,本研究3个施肥水平上,虽2种方式配施的各项检测指标数值上都高于全部基施的处理,但均未达到显著水平,有待进一步探索。总之,铁肥(硫酸亚铁)施用通过促进绿豆植株叶绿素合成和光合作用能明显提升绿豆产量和品质。
4 结论
与CK相比,叶绿素含量显著增加,施肥量达到750 kg/hm2时,叶绿素含量达到最高,但2种施肥方式之间并无明显差异;光合荧光参数Fv/Fm、Fv/Fo、Y(Ⅱ)和ETR随着施肥量的增加整体呈上升趋势,施肥量达到750 kg/hm2时,所有指标增加均达到显著水平;产量相关指标中,铁肥施用对单荚粒数无明显影响,但对株高、荚长、单株荚数、百粒重、籽粒产量和生物产量在施肥量为750 kg/hm2时影响显著,均明显增长;成熟籽粒中的含铁量除250 kg/hm2+基施处理外,其余处理与对照相比均提高,且达到极显著水平。综上所述,铁肥施用可以明显促进植物光合作用,提高作物产量,并且增加绿豆种子中的含铁量,是一种增产提质的栽培措施。
参考文献
Detection and characterization of polymorphic simple sequence repeats markers for the analysis of genetic diversity in Indian mungbean [Vigna radiata (L.) Wilczek]
,
Effects of mung bean on intestinal microflora and lipid metabolism in rats fed with a high- fat diet
,
Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health
,
Mungbean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits
,
Iron sources effects on growth, physiological parameters and nutrition of cacao
,
Towards a knowledge-based correction of iron chlorosis
,DOI:10.1016/j.plaphy.2011.01.026 PMID:21349731 [本文引用: 1]
Iron (Fe) deficiency-induced chlorosis is a major nutritional disorder in crops growing in calcareous soils. Iron deficiency in fruit tree crops causes chlorosis, decreases in vegetative growth and marked fruit yield and quality losses. Therefore, Fe fertilizers, either applied to the soil or delivered to the foliage, are used every year to control Fe deficiency in these crops. On the other hand, a substantial body of knowledge is available on the fundamentals of Fe uptake, long and short distance Fe transport and subcellular Fe allocation in plants. Most of this basic knowledge, however, applies only to Fe deficiency, with studies involving Fe fertilization (i.e., with Fe-deficient plants resupplied with Fe) being still scarce. This paper reviews recent developments in Fe-fertilizer research and the state-of-the-art of the knowledge on Fe acquisition, transport and utilization in plants. Also, the effects of Fe-fertilization on the plant responses to Fe deficiency are reviewed. Agronomical Fe-fertilization practices should benefit from the basic knowledge on plant Fe homeostasis already available; this should be considered as a long-term goal that can optimize fertilizer inputs, reduce grower's costs and minimize the environmental impact of fertilization.Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene
,
Iron resupply- mediated deactivation of Fe-deficiency stress responses inroots of sugar beet
,
A method to minimize the global warming and environmental pollution
,There has been continuous increase in the level of CO2 in atmosphere. Therefore, it is essential to develop an economical and convenient process to reduce the concentration of CO2 in the atmosphere. In this study, we have proposed an economical and efficient adsorption method to minimize the environmental CO2. A fluidized bed adsorption column was used, fabricated using cast iron sheet. The low prize pyrolyzed biochar prepared from farming biomass (crushed fine powder) was used as an adsorbent to adsorb CO2 from the mixture of air and CO2 (99.5% air and 0.5% CO2). The experimental observation was taken for the % removal of CO2 from the mixture of air and CO2, development of adsorption isotherm and to study the effect of pressure and inlet gas flow rate on the amount of CO2 adsorbed per kg of biochar. The exhausted (CO2 adsorbed) biochar from the fluidized column was tested as a fertilizer for the wheat crop and it has given near about 10% increase in the height of wheat crop within the first 10 days after sowing the wheat seeds. On the basis of this experimentation, we have proposed a hypothetical method, using above mentioned fluidized bed column and biochar as adsorbent to reduce the CO2 concentration in the highly polluted regions.
Using iron fertilizer to control Cd accumulation in rice plants: a new promising technology
,
Structure and fertilizer properties of byproducts formed in the synthesis of EDDHA
,
/
〈 | 〉 |