作物杂志, 2024, 40(6): 237-241 doi: 10.16035/j.issn.1001-7283.2024.06.032

植物保护

防御假单胞菌KBD-3在作物病害防治及富硒中的应用研究

崔宏,1, 刘青2, 赵秀珍3, 宗浩,4, 李莹5, 申莉莉5, 焦裕冰5, 王凤龙5, 杨金广5, 袁莲莲,5

1新泰市现代农业发展服务中心,271200,山东新泰

2泰安市岱岳区农业技术推广中心,271000,山东泰安

3东阿县农业技术推广中心,252201,山东东阿

4山东临沂烟草有限公司,276000,山东临沂

5中国农业科学院烟草研究所,266101,山东青岛

Applied Research of Pseudomonas protegens KBD-3 in Crop Disease Control and Selenium-Enrichment

Cui Hong,1, Liu Qing2, Zhao Xiuzhen3, Zong Hao,4, Li Ying5, Shen Lili5, Jiao Yubing5, Wang Fenglong5, Yang Jinguang5, Yuan Lianlian,5

1Xintai Modern Agricultural Development Service Center, Xintai 271200, Shandong, China

2Tai’an Daiyue District Agricultural Technology Extension Center, Tai’an 271000, Shandong, China

3Dong’e Agricultural Technology Extension Center, Dong’e 252201, Shandong, China

4Linyi Tobacco Co., Ltd. of Shangdong Province, Linyi 276000, Shandong, China

5Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, Shandong, China

通讯作者: 袁莲莲,主要从事烟草病毒病综合防治与分子病毒学研究,E-mail:yllwsw11@126.com宗浩,主要从事农业技术推广相关工作,E-mail:hzongsdau@163.com

收稿日期: 2024-03-15   修回日期: 2024-04-28   网络出版日期: 2024-07-30

基金资助: 中国烟草总公司山东省公司科技重大专项(202302)

Received: 2024-03-15   Revised: 2024-04-28   Online: 2024-07-30

作者简介 About authors

崔宏,主要从事农业技术推广相关工作,E-mail:120397598@qq.com

摘要

为筛选防效优良的微生物应用于作物病害防治中,同时开发一条安全的补硒途径进行富硒农产品的生产,对前期筛选到的防御假单胞菌KBD-3进行了抗病及纳米硒化研究。结果表明,KBD-3菌液对烟草花叶病毒具有较好的钝化效果,抑制率高达95.77%,同时对青枯雷尔氏菌的抑制效果较好,对烟草青枯病的相对防效达70.89%。另外,KBD-3可将亚硒酸钠还原为纳米硒,经纳米硒溶液处理的绿豆芽中硒含量大幅提高。这表明,KBD-3不仅为作物病害防治提供新的微生物资源,还能较好地用于作物的富硒培育。

关键词: 防御假单胞菌; 病害防治; 富硒; 烟草花叶病毒; 青枯病; 绿豆芽

Abstract

In order to screen the microorganisms with good control effect for crop disease control and develop a safe way of selenium supplementation for the production of selenium-rich agricultural products, the disease resistance and nano-selenization of Pseudomonas protegens KBD-3 were studied. The results showed that the KBD-3 bacterial solution had good inactivation effect on tobacco mosaic virus (TMV), the inhibition rate was 95.77%, and had a good inhibition effect on Ralstonia solanacearum with the relative control effect on tobacco bacterial wilt reaching 70.89%. In addition, KBD-3 could reduce sodium selenite to nano-selenium, and the selenium content of mung bean sprouts treated with nano-selenium solution was greatly increased. These indicated that KBD-3 did not only provide a new microbial resource for crop disease control, but also could be used for selenium-rich cultivation of crops.

Keywords: Pseudomonas protegens; Disease control; Selenium-enrichment; Tobacco mosaic virus; Bacterial wilt; Mung bean sprouts

PDF (1513KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

崔宏, 刘青, 赵秀珍, 宗浩, 李莹, 申莉莉, 焦裕冰, 王凤龙, 杨金广, 袁莲莲. 防御假单胞菌KBD-3在作物病害防治及富硒中的应用研究. 作物杂志, 2024, 40(6): 237-241 doi:10.16035/j.issn.1001-7283.2024.06.032

Cui Hong, Liu Qing, Zhao Xiuzhen, Zong Hao, Li Ying, Shen Lili, Jiao Yubing, Wang Fenglong, Yang Jinguang, Yuan Lianlian. Applied Research of Pseudomonas protegens KBD-3 in Crop Disease Control and Selenium-Enrichment. Crops, 2024, 40(6): 237-241 doi:10.16035/j.issn.1001-7283.2024.06.032

作物病害作为制约农业生产的重要因素,严重威胁了全球农业和食品安全。传统的化学防治方法虽可在一定程度上控制病害的发生,但是也存在环境污染、农药残留和破坏生态等问题,故探索可持续、环保的作物病害防治技术[1]。生物防治是指利用有益生物及其代谢产物进行植物病害防治,与化学防治相比,其绿色安全,不易产生抗性,选择性强。因此,利用生防微生物的防治方式逐渐引起人们的关注,国内外已有大量的相关研究,发展前景广阔[2]。防御假单胞菌(Pseudomonas protegens)是植物根际促生微生物的主要类群之一,其营养需求简单、增殖速度快、根际定殖力强,不但能产生多种抑菌活性物质,同时还能分泌促进作物生长的代谢物质。除此之外,与其他假单胞菌相比,防御假单胞菌可分泌一些杀虫毒素,其生物防治效果更加突出[3-4]

硒作为“生命元素”,是生物体生长所必需的,在提高机体免疫力、调节代谢、抗氧化、解毒、促进生殖等方面均有重要的生理功能[5-7]。硒在地球上的分布并不均匀,中国约72%地区处于低硒、缺硒带,日常饮食过程中硒摄入量的不足严重影响着几亿人口的身体健康[8]。目前,随着人们保健和养生意识的增强,各种富硒产品相继出现,一些农户为增加卖点,通过在种植过程中施用无机硒(亚硒酸钠、硒酸钠)来提高产品中硒含量。但是无机硒的毒性大,被《常用危险化学品的分类及标志:GB 13690-2009》将其列为第六类剧毒物质,无机硒的使用严重影响人类和环境健康[9],而纳米硒毒性低且活性高,有望成为最佳补硒形态。微生物转化合成纳米硒条件温和,分散性好,结构稳定,应用前景良好[10]

高效安全的微生物制剂一直是作物病害防治研究的重点,但目前少有多重防效且使作物富硒的研究成果,更缺乏推广应用。本试验将从生物技术方面进行探索,筛选出使作物富硒且防效优良的微生物制剂。

1 材料与方法

1.1 试验材料

供试生防菌株为防御假单胞菌KBD-3,该菌种从云南保山高发病烟区采集的健康烟草植株根际土壤中分离得到,现保存于中国微生物菌种保藏管理委员会普通微生物中心,保藏编号为CGMCC No.26145,保藏日期为2022年11月14日。供试材料为烟草(K326和枯斑三生烟)、绿豆、青枯雷尔氏菌(Ralstonia solanacearum)和烟草花叶病毒(TMV)毒源,均由中国农业科学院烟草研究所植物保护研究中心保存提供。供试培养基为LB液体培养基、LB固体培养基、NB液体培养基和NA固体培养基。供试试剂为亚硒酸钠(上海泰锐尔生物科技有限公司提供)和农用硫酸链霉素72%可溶性粉剂(石家庄曙光制药厂提供)。

1.2 试验方法

1.2.1 对TMV抑制效果的测定

挑选生长良好的单一KBD-3菌落接种于LB液体培养基中,在37 ℃、150转/min条件下振荡培养20 h,得到KBD-3发酵菌液,将其用无菌水稀释成1×108 cfu/mL菌液备用。

试验采用半叶法。取KBD-3菌液(浓度108 cfu/mL)、LB液体培养基分别与等体积TMV汁液(将带TMV的烟草叶片冷冻研磨成粉末,按1:40加去离子水,纱布过滤)混合15 min后摩擦接种,接种前接种叶片喷洒少量石英砂。左半片叶接种KBD-3菌液与TMV汁液的混合液,右半片叶接种LB液体培养基与TMV汁液的混合液(空白对照,CK),每半片叶接种量为200 μL。接种后对叶面进行冲洗,接种3株枯斑三生烟,每株接种上部2片叶,重复3次,3~5 d调查枯斑数并计算抑制率。

抑制率(%)=[1-(处理平均枯斑数/对照平均枯斑数)]×100。

1.2.2 对青枯雷尔氏菌抑制效果的测定

在NA培养基正中心滴加20 μL防御假单胞菌KBD-3菌液(浓度108 cfu/mL),待菌液被培养基充分吸收后,倒置于28 ℃培养箱中培养48 h,然后用喷壶喷洒青枯雷尔氏菌重悬液(OD600=0.3),倒置于28 ℃培养箱中进行培养。重复3次,设置空白对照(NA培养基中仅喷洒同等浓度的青枯雷尔氏菌重悬液),48 h后观察结果,并测量抑菌圈直径。

1.2.3 对烟草青枯病防治效果的测定

在育苗盘中播撒K326种子,待烟苗伸展4~5片叶时移栽到装有无菌土的花盆中,缓苗后用KBD-3菌液(浓度为108 cfu/mL)对烟苗进行第1次灌根处理,5 d后进行再次灌根,每次灌根10 mL/株,第2次灌根2 d后,将青枯雷尔氏菌菌液(OD600=0.3)接种于烟苗根际土壤中,用量10 mL/株。同时设置对照组,以施用农用硫酸链霉素72%可溶性粉剂(6470倍液)作为阳性对照(CK1),2次灌根间隔5 d,每次灌根10 mL/株,其他处理均与试验组相同;以只接种10 mL/株青枯雷尔氏杆菌菌液作为发病对照(CK2);以只浇清水作为空白对照(CK3)。每组处理5株,3次重复。接种青枯雷尔氏杆菌7 d后,调查各烟苗的发病率(%)、病情指数及相对防治效果(%)。病情分级标准[11]如下:

0级:全株无病;1级:茎部部分出现褪绿斑,或发病一侧1/2以下叶片凋萎;3级:茎部出现黑色条斑,但不超过茎高1/2,或发病一侧1/2至2/3叶片凋萎;5级:茎部黑色条斑超过茎高1/2,但未达到茎顶部,或发病一侧2/3以上叶片凋萎;7级:茎部黑色条斑到达茎顶部,或病株叶片全部凋萎;9级:病株基本枯死。

发病率(%)=(发病株数/调查总株数)×100;病情指数=(∑各级病株数×该病级值)/(调查总株数×最高级值)×100;控制效果(%)=[(对照区病情指数-处理区病情指数)/对照区病情指数]×100。

1.2.4 对无机硒还原作用的测定

将活性菌株KBD-3接种到LB固体培养基上进行纯化,挑取生长良好的单一菌落接种于LB液体培养基中,37 ℃、150转/min振荡培养20 h,后以1%(v/v)接种量加入到含1 mmol/L亚硒酸钠的LB液体培养基中,30 ℃、150转/min振荡培养,2~5 d后观察菌液颜色,待出现红色后用扫描电镜观察[12]

1.2.5 纳米硒的制备

按1%接种量将防御假单胞菌KBD-3菌液接种至含1 mmol/L亚硒酸钠的LB液体培养基中,在37 ℃、150转/min条件下振荡培养2~5 d,获得纳米硒活性菌液。将纳米硒活性菌液在13 000 g条件下离心10 min,沉淀物为纳米硒和菌体的混合物。向沉淀物中加入溶菌酶,使其终浓度为20 mg/mL,37 ℃孵育20 min,孵育期间间隔5 min取出倒置几次混匀。然后置于冰上超声30 min(超声30 s,停40 s)。将超声后的溶液在6000转/min条件下离心10 min,去沉淀收集上清液。将上清液在13 000 g条件下离心10 min,弃上清液,沉淀用超纯水溶解洗涤2次后获得纳米硒[12]

1.2.6 富硒豆芽的培育

挑选饱满、无蛀虫霉烂的绿豆作为供试种豆,于50 ℃热水中浸泡30 min后沥干水分转移到盛有30 mL 15 μg/mL纳米硒溶液的烧杯中,室温下浸泡过夜。后取出沥干放置于铺有4层纱布的育苗托盘中,上部覆盖4层湿纱布,每12 h喷淋1次10 mL 15 μg/mL纳米硒溶液,同时设空白对照试验(CK)[13]。4 d后,分别取各处理培养的豆芽样品,去掉种皮,用去离子水反复漂洗后置于60 ℃烘箱中烘干(约6 h),粉碎过60目筛,后采用氢化物原子荧光分光光度计测定样品中的硒含量。

2 结果与分析

2.1 KBD-3对TMV的抑制效果

图1可知,KBD-3菌液对TMV具有较好的抑制效果,结合表1可知,其对TMV的抑制率高达95.77%,防治效果明显。

图1

图1   KBD-3菌液对TMV的钝化作用

左半叶:KBD-3发酵菌液;右半叶:空白对照。

Fig.1   Passivation of KBD-3 bacterial solution on TMV

Left half: KBD-3 bacterial solution; Right half: CK.


表1   KBD-3菌液对TMV的抑制作用

Table 1  Inhibition effect of KBD-3 bacterial solution on TMV

处理
Treatment
枯斑数
Number of local necrotic lesions
抑制率
Inhibition rate (%)
KBD-33.33±0.04b95.77±1.05
CK78.67±0.72a

不同小写字母表示差异显著(P < 0.05)。下同。

Different lowercase letters indicate significant differences (P < 0.05). The same below.

新窗口打开| 下载CSV


2.2 KBD-3对青枯雷尔氏菌的抑制效果

待喷洒青枯雷尔氏菌重悬液后倒置于28 ℃培养箱中进行培养,48 h后进行观察测量,结果如图2所示,菌液对青枯雷尔氏菌的抑制效果较好,抑菌圈直径达6.23 cm。

图2

图2   KBD-3菌液对烟草青枯病菌的拮抗活性

左:KBD-3菌液;右:空白对照。

Fig.2   Antagonistic activity of KBD-3 bacterial solution against tobacco bacterial wilt

Left: KBD-3 bacterial solution; Right: CK.


2.3 KBD-3对烟草青枯病的防治效果

结果(表2)显示,KBD-3菌液处理的烟草青枯病发病率为40.24%,病情指数相对较低,相对防效达到70.89%,较CK1的防效高,而只接种青枯病菌的对照处理(CK2)的发病率高达89.31%。

表2   KBD-3菌液对烟草青枯病的防治效果

Table 2  Control effects of KBD-3 bacterial solution on tobacco bacterial wilt

处理
Treatment
发病率
Incidence
rate (%)
病情指数
Disease
index
相对防效
Relative control
effect (%)
KBD-340.24±0.07c17.02±0.05c70.89±0.12a
CK153.86±0.11b30.21±0.03b48.32±0.08b
CK289.31±0.14a58.46±0.08a
CK300

新窗口打开| 下载CSV


2.4 KBD-3对无机硒的还原作用

在KBD-3菌液中加入亚硒酸钠培养2~3 d后,菌液中观察到红色出现(图3),表明KBD-3菌株可将亚硒酸钠还原为红色单质硒。经扫描电镜检测(图4)发现,红色菌液样品中菌体表面及外部存在高电子密度颗粒,继而进行EDS分析,在11.22 keV发现了硒的特征吸收峰,表明颗粒中含有硒元素;硒颗粒为球形,呈聚集状,粒径主要分布在100~200 nm,为纳米硒。由此可确定菌株KBD-3将亚硒酸钠还原为纳米硒。

图3

图3   KBD-3菌液及其纳米硒生物合成活性菌液

左:KBD-3菌液;右:KBD-3纳米硒生物合成活性菌液。

Fig.3   KBD-3 bacterial solution and its nano-selenium biosynthesis active bacterial solution

Left: KBD-3 bacterial solution; Right: KBD-3 nano-selenium biosynthesis active bacterial solution.


图4

图4   菌株KBD-3生物合成纳米硒的SEM/EDS图谱

Fig.4   SEM/EDS spectrum of biosynthesis of nano-selenium from strain KBD-3


2.5 KBD-3对绿豆芽培育的富硒效果

表3所示,经纳米硒溶液处理的绿豆芽中硒含量为45.35 μg/g,与对照相比,硒含量有了大幅提高。这对富硒食品的研究与开发具有一定的指导意义。

表3   不同处理对绿豆芽中硒含量的影响

Table 3  Effects of different treatments on selenium content in mung bean sprouts

处理
Treatment
样品质量
Sample mass (g)
硒含量
Selenium content (μg/g)
纳米硒溶液
Nano-selenium solution
0.15
45.35
CK0.150.00

新窗口打开| 下载CSV


3 讨论

目前,越来越多的生防菌种类被应用到作物病害防治中,生防菌的作用机理包括抗病物质产生、诱导抗病性、种群竞争等诸多方面[14]。这些生防菌包括细菌、真菌和其他微生物,可有效抑制病原菌的生长繁殖,从而达到防治作物病害的效果[1]。防御假单胞菌是近年来重新归类的一个新物种,有研究[15-20]表明,防御假单胞菌可产生一些抑菌次生代谢产物,如硝吡咯菌素、藤黄绿脓菌素、2,4-DAPG等,这些物质可有效抑制作物病害的发生,对番茄灰霉病、小麦全蚀病以及葡萄灰霉病等多种果蔬的侵染病害具有防控作用。本研究提供的防御假单胞菌KBD-3,同时对烟草花叶病和青枯病病原菌具有拮抗活性,对烟草花叶病和青枯病的防效分别为95.77%和70.89%,防效较好。

硒元素具备多种生物学功能,可调控生物机能,但自然界中多以无机态硒(硒酸盐、亚硒酸盐等)存在,这些形态的硒具有一定的毒性,且难以被植物吸收利用[21]。迄今为止,纳米硒在已发现的硒形态中毒性最低[22]。纳米硒的产生与细菌的氧化还原反应有一定的关系,能够生物合成纳米硒的微生物种属很多,超30个属[9],但应用生物纳米硒培育富硒作物的研究相对较少。本试验结果显示,防御假单胞菌KBD-3具有硒元素还原能力,可将亚硒酸钠还原为纳米硒。经纳米硒溶液处理的绿豆芽中硒含量大幅提高,这表明微生物还原生成的纳米硒能被植物吸收转化,可满足人体对硒的安全要求,为有效制备富硒食品提供新思路。

4 结论

本研究中,防御假单胞菌KBD-3同时具备拮抗烟草花叶病毒和烟草青枯病病原菌的活性,且具有硒元素还原能力,可将亚硒酸钠还原为纳米硒,因此,其不仅为作物病害防治提供新的微生物资源,还能较好地用于作物的富硒培育。

参考文献

蔺忙碌.

植物病害防治中的生物防治技术研究

农业灾害研究, 2023, 13(10):13-15.

[本文引用: 2]

李雨欣, 戴欣宇, 曹雪梅, .

生防菌在植物病害领域的研究进展

湖南生态科学学报, 2023, 10(2):109-116.

[本文引用: 1]

Haas D, Dfago G.

Biological control of soil-borne pathogens by fluorescent pseudomonads

Nature Reviews Microbiology, 2005, 3(4):307.

DOI:10.1038/nrmicro1129      PMID:15759041      [本文引用: 1]

Particular bacterial strains in certain natural environments prevent infectious diseases of plant roots. How these bacteria achieve this protection from pathogenic fungi has been analysed in detail in biocontrol strains of fluorescent pseudomonads. During root colonization, these bacteria produce antifungal antibiotics, elicit induced systemic resistance in the host plant or interfere specifically with fungal pathogenicity factors. Before engaging in these activities, biocontrol bacteria go through several regulatory processes at the transcriptional and post-transcriptional levels.

Kupferschmied P, Pechy-tarr M, Imperiali N, et al.

Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens

PLoS Pathogens, 2014, 10(2):e1003964.

[本文引用: 1]

Zeng H, Jr G F C.

Selenium as an anticancer nutrient: Roles in cell proliferation and tumor cell invasion

The Journal of Nutritional Biochemistry, 2008, 19(1):1-7.

[本文引用: 1]

Beck M A, Levander O A, Handy J.

Selenium deficiency and viral infection

The Journal of Nutrition, 2003, 133(1):1463.

[本文引用: 1]

郑世学, 粟静, 王瑞, .

硒是双刃剑?一谈微生物中的硒代谢

华中农业大学学报, 2013, 32(5):1-8.

[本文引用: 1]

谢斌, 吴文良, 郭岩彬, .

作物富硒研究进展

江苏农业科学, 2014, 42(1):15-18.

[本文引用: 1]

李利军, 马英辉, 卢美欢.

纳米硒合成细菌Lxz-41的鉴定、培养条件优化及其在富硒猕猴桃栽培中的应用

食品工业科技, 2019, 40(21):110-117.

[本文引用: 2]

杨辉, 王丽红, 孔阳, .

微生物合成纳米硒的研究进展

食品工业科技, 2020, 41(15):339-344,351.

[本文引用: 1]

曾缘欢. 烟草青枯病抗性相关NBS-LRR基因的克隆与功能鉴定. 福州:福建农林大学, 2016.

[本文引用: 1]

王钰婷. 纳米硒合成菌株的筛选及产硒机理和应用研究. 合肥:中国科学技术大学, 2019.

[本文引用: 2]

孟君, 董梦娜, 张峻松, .

富硒豆芽培育条件研究

食品研究与开发, 2019, 40(22):57-61.

[本文引用: 1]

刘邮洲, 陈志谊, 梁雪杰, .

番茄枯萎病和青枯病拮抗细菌的筛选、评价与鉴定

中国生物防治学报, 2012, 28(1):101- 108.

[本文引用: 1]

Ramette A, Frapolli M, Fischer-Le S M, et al.

Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2, 4-diacetylphloroglucinol and pyoluteorin

Systematic and Applied Microbiology, 2011, 34(3):180-188.

DOI:10.1016/j.syapm.2010.10.005      PMID:21392918      [本文引用: 1]

Fluorescent Pseudomonas strains producing the antimicrobial secondary metabolite 2,4-diacetylphloroglucinol (Phl) play a prominent role in the biocontrol of plant diseases. A subset of Phl-producing fluorescent Pseudomonas strains, which can additionally synthesize the antimicrobial compound pyoluteorin (Plt), appears to cluster separately from other fluorescent Pseudomonas spp. based on 16S rRNA gene analysis and shares at most 98.4% 16S rRNA gene sequence identity with any other Pseudomonas species. In this study, a polyphasic approach based on molecular and phenotypic methods was used to clarify the taxonomy of representative Phl(+) Plt(+) strains isolated from tobacco, cotton or wheat on different continents. Phl(+) Plt(+) strains clustered separately from their nearest phylogenetic neighbors (i.e. species from the 'P. syringae', 'P. fluorescens' and 'P. chlororaphis' species complexes) based on rpoB, rpoD or gyrB phylogenies. DNA-DNA hybridization experiments clarified that Phl(+) Plt(+) strains formed a tight genomospecies that was distinct from P. syringae, P. fluorescens, or P. chlororaphis type strains. Within Phl(+) strains, the Phl(+) Plt(+) strains were differentiated from other biocontrol fluorescent Pseudomonas strains that produced Phl but not Plt, based on phenotypic and molecular data. Discriminative phenotypic characters were also identified by numerical taxonomic analysis and siderotyping. Altogether, this polyphasic approach supported the conclusion that Phl(+) Plt(+) fluorescent Pseudomonas strains belonged to a novel species for which the name Pseudomonas protegens is proposed, with CHA0(T) (=CFBP 6595(T), =DSM 19095(T)) as the type strain.Copyright © 2011 Elsevier GmbH. All rights reserved.

方倩, 谢芝玲, 陈汉娜, .

脂肪酶lipAB操纵子在防御假单胞菌中的克隆、表达及活性研究

激光生物学报, 2018, 27 (5):442-450.

[本文引用: 1]

汤丹艳. 防御假单胞菌SN15-2生防和抗逆基因功能分析. 上海: 华东理工大学, 2020.

[本文引用: 1]

彭于发, 陈善铭.

荧光假单胞菌Tn5诱变菌株防治小麦全蚀病的初步研究

植物病理学报, 1990, 20(3):229-233.

[本文引用: 1]

Andreolli M, Zapparoli G, Angelini E, et al.

Pseudomonas protegens MP12: A plant growth-promoting endophytic bacterium with broad-spectrum antifungal activity against grapevine phytopathogens

Microbiological Research, 2019, 219:123-131.

DOI:S0944-5013(18)30270-2      PMID:30642463      [本文引用: 1]

Pseudomonas sp. MP12 was isolated from a soil sample collected in a typical warm-temperate deciduous forest near Brescia, Northern Italy. Phylogenetic analysis identified the species as Pseudomonas protegens. We evidenced in this strain the presence of the genes phlD, pltB and prnC responsible for the synthesis of the antifungal compounds 2,4-diacetylphloroglucinol (2,4-DAPG), pyoluteorin and pyrrolnitrin, respectively. P. protegens MP12 was also shown to produce siderophores and ammonia, yielded positive results with the indole-3-acetic acid test, and was capable of phosphate solubilization. Moreover, P. protegens MP12 exhibited inhibitory effects on in vitro mycelial growth of prominent grapevine (Vitis vinifera) phytopathogens such as Botrytis cinerea, Alternaria alternata, Aspergillus niger, Penicillium expansum and Neofusicoccum parvum. The strain showed activity even against Phaeomoniella chlamydospora and Phaeoacremonium aleophilum, which cause the devastating tracheomycosis/esca disease of grapevine trunks for which no efficacious control methods have been demonstrated so far. Furthermore, the MP12 strain manifested in vivo antifungal activity against B. cinerea on grapevine leaves. Culture-dependent and culture-independent analysis revealed the ability of P. protegens MP12 to efficiently and permanently colonize inner grapevine tissues. These results suggest that P. protegens MP12 could be worth of exploitation as an antifungal biocontrol agent for applications in viticulture.Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

梅小飞, 王智荣, 阚建全.

荧光假单胞菌防治果蔬病害的研究进展

微生物学报, 2019, 59(11):2069-2082.

[本文引用: 1]

余婷婷, 袁莲莲, 李莹, .

纳米硒化荧光假单胞菌KBD-1菌株对烟草病毒病的抑制作用

中国烟草科学, 2021, 42(5):43-49.

[本文引用: 1]

Zhang J S, Gao X Y, Zhang L D, et al.

Biological effects of a nano red elemental selenium

Biofactors, 2001, 15(1):27-38.

DOI:10.1002/biof.5520150103      PMID:11673642      [本文引用: 1]

A novel selenium form, nano red elemental selenium (Nano-Se) was prepared by adding bovine serum albumin to the redox system of selenite and glutathione. Nano-Se has a 7-fold lower acute toxicity than sodium selenite in mice (LD(50) 113 and 15 mg Se/kg body weight respectively). In Se-deficient rat, both Nano-Se and selenite can increase tissue selenium and GPx activity. The biological activities of Nano-Se and selenite were compared in terms of cell proliferation, enzyme induction and protection against free racial-mediated damage in human hepatoma HepG2 cells. Nano-Se and selenite are similarly cell growth inhibited and stimulated synthesis of glutathione peroxidase (GPx), phospholipid hydroperoxide glutathione peroxidase (PHGPx) and thioredoxin reductase (TR). When HepG2 cells were co-treated with selenium and glutathione, Nano-Se showed less pro-oxidative effects than selenite, as measured by cell growth. These results demonstrate that Nano-Se has a similar bioavailability in the rat and antioxidant effects on cells.

/