作物杂志, 2025, 41(1): 202-207 doi: 10.16035/j.issn.1001-7283.2025.01.025

生理生化·植物营养·栽培耕作

HPLC-ELSD法同时测定党参休眠过程中5种可溶性糖含量

唐顺莉,, 张延红,, 杜弢, 陈晖, 何春雨, 董婉琦

甘肃中医药大学药学院,730000,甘肃兰州

Simultaneous Determination of Contents of Five Kinds of Soluble Sugars in Codonopsis pilosula during Dormancy by HPLC-ELSD Method

Tang Shunli,, Zhang Yanhong,, Du Tao, Chen Hui, He Chunyu, Dong Wanqi

Department of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu, China

通讯作者: 张延红,主要从事药用植物育种和组织培养方面研究,E-mail:zhyh456789@163.com

收稿日期: 2023-05-20   修回日期: 2023-07-25   网络出版日期: 2024-10-22

基金资助: 国家自然科学基金(81960683)
甘肃省高等学校产业支撑计划项目(2020C-09)
甘肃省科技创新服务平台建设项(18JR2TA017)
甘肃省民生科技专项(科技特派员专题)(20CX9NA070)
中央引导地方科技发展专项资金项目(30440323)
现代农业产业技术体系建设专项资金(CARS-21)

Received: 2023-05-20   Revised: 2023-07-25   Online: 2024-10-22

作者简介 About authors

唐顺莉,研究方向为药用植物超低温保存,E-mail:tangsunli890@163.com

摘要

建立高效液相色谱―蒸发光散射(HPLC-ELSD)法同时测定党参5种可溶性糖含量的技术方法,探明可溶性糖在党参抗寒及休眠过程中发挥的作用。5种可溶性糖适宜的检测条件为Analysis Column(4.6 mm× 250 mm 5-Micron)色谱柱,流动相为乙腈:水(70:30)溶液,柱温35 ℃,流速1.0 mL/min;ELSD参数:雾化温度50 ℃,漂移管温度110 ℃,氮气流速2.2 mL/min,增益值1.0。在党参自然休眠过程中海藻糖只在休眠前期的根和休眠期的芽中检测到;棉子糖只在休眠前期的根中检测到;果糖和葡萄糖在休眠前期的叶中含量较高,蔗糖在休眠前期的根和休眠期的芽中含量较高,三者均在解除休眠后的芽中含量最高。本研究建立了高效的HPLC-ELSD法同时检测5种可溶性糖的技术体系,明确了海藻糖和棉子糖是党参抗寒的主要可溶性糖组分,其中海藻糖在根中合成并进一步转运至芽中。果糖、葡萄糖和蔗糖是党参根中储存的可溶性糖组分,也是萌发的物质和能量来源。

关键词: 党参; 可溶性糖组分; 高效液相色谱―蒸发光散射法; 休眠; 逆境生理

Abstract

A method was developed for the simultaneous determination of contents of five soluble sugars in different organs of Codonopsis pilosula (Franch.) Nannf. during natural dormancy by HPLC-ELSD for investigating the role of soluble sugars in the cold resistance. The suitable detection conditions for the five soluble sugars were: Analysis Column (4.6 mm×250 mm 5-Micron), acetonitrile:water (70:30) solution as the mobile phase, column temperature of 35 °C, flow rate of 1.0 mL/min; ELSD parameters: nebulization temperature of 50 °C, drift tube temperature of 110 °C, nitrogen flow rate of 2.2 mL/min, gain value of 1.0. During the natural dormancy of C.pilosula, trehalose was only detected in roots (pre-dormant) and buds (dormant), raffinose was only detected in pre-dormant roots; fructose and glucose were found in higher levels in the leaves in the early stage of dormancy, and sucrose was found in higher levels in the roots in the early stage of dormancy and the buds in the dormant period. The highest levels of all three types of sugars were found in the buds after dormancy was released. This study established an efficient HPLC-ELSD technical system for the simultaneous detection of five soluble sugars, and confirmed that trehalose and raffinose are the main soluble sugar components of C.pilosula for cold resistance. Trehalose is synthesized in the roots and further transported to the buds. Fructose, glucose and sucrose are soluble sugar components stored in the roots of C.pilosula, and are also the source of substances and energy for germination.

Keywords: Codonopsis pilosula (Franch.) Nannf.; Soluble sugar component; HPLC-ELSD; Dormancy; Stress physiology

PDF (581KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

唐顺莉, 张延红, 杜弢, 陈晖, 何春雨, 董婉琦. HPLC-ELSD法同时测定党参休眠过程中5种可溶性糖含量. 作物杂志, 2025, 41(1): 202-207 doi:10.16035/j.issn.1001-7283.2025.01.025

Tang Shunli, Zhang Yanhong, Du Tao, Chen Hui, He Chunyu, Dong Wanqi. Simultaneous Determination of Contents of Five Kinds of Soluble Sugars in Codonopsis pilosula during Dormancy by HPLC-ELSD Method. Crops, 2025, 41(1): 202-207 doi:10.16035/j.issn.1001-7283.2025.01.025

逆境是影响植物生长发育的主要因素之一,不良的环境胁迫会造成作物减产,品质降低,因此研究植物抵御逆境的机制尤为重要。植物抗寒性的强弱受细胞内可溶性糖含量的影响,研究[1-2]表明,抗寒性强的植物中可溶性糖含量高。可溶性糖是一种能源物质,也是一种信号分子,它在植物的生长发育以及对抗逆境方面发挥着重要作用[3]。糖信号调控植物生长发育和耐逆性形成机理是植物生物学研究的热点[4]。可溶性糖中蔗糖、海藻糖及棉子糖等系列寡糖在植物的抗性研究中具有重要地位[5]。研究[6]表明,植物遇到低温胁迫可诱导海藻糖关键酶基因的表达,促进细胞内海藻糖产生抵御低温等胁迫的伤害。棉子糖在植物遭受冷冻胁迫时可作为低温保护剂保护细胞。研究[7-8]发现,采用外源葡萄糖处理可提高拟南芥的耐热性;喷洒蔗糖可以通过转录重编程提高水稻对热胁迫的抗性[9];采用外源葡萄糖、蔗糖和海藻糖对玉米幼苗进行灌根处理后,可提高其耐热性[4]。因此,为了更好地研究植物生长发育及响应逆境的机理,进一步提高植物的耐逆性,研究植物体内的可溶性糖含量变化至关重要。

常用的测定糖类的方法有化学法[10]、气相色谱法[11]和高效液相色谱法[12]等。化学法只能测总糖含量,而且受到的干扰因素较多,如控制不好操作条件容易引起误差[13];气相色谱法需要在色谱柱前将样品衍生为可挥发的成分,是一个繁琐费时的操作[14]。相比之下,高效液相色谱法分析的糖种类较多,操作简单便捷,是测定植物体内糖种类及含量的最佳选择[15-19]。高效液相色谱―蒸发光散射(HPLC-ELSD)法是糖类检测应用较为广泛的一种方法[20]。有学者采用此方法测定食品[21]、红树莓果实[22]和烟草[23]中的果糖、葡萄糖和蔗糖的含量,峰形和分离效果均较好。目前,关于同时检测抗逆的海藻糖和棉子糖研究较少,采用HPLC-ELSD法测定党参休眠不同时期和器官中可溶性糖组分和含量鲜见报道。

本研究利用HPLC-ELSD技术同时测定植物中果糖、葡萄糖、蔗糖、海藻糖和棉子糖的含量,旨在为植物逆境研究提供技术方法,并通过测定党参自然休眠过程中不同器官的5种可溶性糖含量,探明5种可溶性糖在党参抗寒和休眠过程中发挥的作用。

1 材料与方法

1.1 试验材料

试验材料党参采自甘肃中医药大学杏林百草园,经林丽高级工程师鉴定为素花党参[Codonopsis pilosula (Franch.) Nannf.];试剂为葡萄糖、果糖、蔗糖、海藻糖和棉子糖标准样品(国家标准物质中心,色谱级)和乙腈(色谱纯),试验用水为超纯水。色谱仪为Agilent 1260 Infintiy(美国Agilent公司),蒸发光散射检测器为Agilent 1260 Infintiy(美国Agilent公司)。

1.2 试验方法

1.2.1 色谱条件

Analysis Column(4.6 mm×250 mm 5-Micron)色谱柱,流动相为乙腈:水(体积比60:40、70:30和80:20),流速为1.0 mL/min,柱温35 ℃,进样量10.0 μL;ELSD参数:漂移管温度设为80和110 ℃,雾化温度50 ℃,氮气流速为2.2 mL/min,增益为1.0。

1.2.2 色谱峰确定

精确称取各标准品100.0 mg,溶解后分别定容至10.0 mL。进行色谱分析时,记录每个标准品的保留时间,与混合标准品的色谱图相比较,根据保留时间确定每个峰的组成。

1.2.3 对照品溶液的制备

分别精确称取果糖、葡萄糖、蔗糖、海藻糖和棉子糖各100.0 mg,用少量超纯水溶解,定容到10.0 mL,即得到浓度为10 mg/mL的单个标准溶液,4 ℃保存备用。

1.2.4 混合标准液的配制

分别量取果糖、蔗糖和棉子糖对照品溶液各1 mL,葡萄糖和海藻糖对照品溶液各0.8 mL,混匀定容到10 mL(每1 mL中含果糖、葡萄糖、蔗糖各1 mg,含棉子糖0.8 mg),4 ℃保存备用。

1.2.5 供试品溶液的制备

精确称取不同休眠期党参叶、茎、根和芽的鲜样各1.0 g,置研钵中,加入超纯水5 mL,研磨成匀浆,倒入离心管内,室温下超声5 min,然后8000转/min常温离心20 min,收集上清液约3 mL,用上述方法对滤渣再提取2次,合并3次提取液,加超纯水定容到20 mL,即得样品提取液,经0.45 µm微孔滤膜过滤待HPLC分析。

1.3 数据处理

采用GraphPad Prism 8.0进行数据作图,采用IBM SPSS Statistics 21.0软件进行LSD多重比较,党参样本每个部位分别取样3个。

2 结果与分析

2.1 体系建立与优化

2.1.1 流动相比例的确定

乙腈和水的比例变化会影响峰值时间和信号。糖在乙腈中的溶解度比在水中低,增加乙腈的比例可以改善峰形,利于基线的分离,但也会显著延长各组分的出峰时间;当水的比例增加时,各成分的峰值时间缩短,峰值信号增强,但水的比例太大,会导致果糖和葡萄糖的基线无法分离[24-25]。由图1可知,在柱温35 ℃,流动相中有机相的比例对保留时间影响明显,流动相中水的比例过大(40%体积分数)时,果糖、葡萄糖峰形重叠;而乙腈比例增大(80%体积分数)后各组分的保留时间明显延后,5种糖组分全部出峰需要44 min,分析时间延长,峰形变宽。流动相乙腈:水为70:30时,果糖、葡萄糖、蔗糖、海藻糖和棉子糖可得到良好的基线分离(分离度均>1.5),在15 min内全部出峰,其峰形良好,出峰时间短。

图1

图1   乙腈和水不同体积比的可溶性糖色谱图

1:果糖;2:葡萄糖;3:蔗糖;4:海藻糖;5:棉子糖。下同。

Fig.1   Chromatogram of soluble sugar in different volume ratios of acetonitrile and water

1: Fructose; 2: Glucose; 3: Sucrose; 4: Trehalose; 5: Raffinose. The same below.


2.1.2 漂移管温度的确定

漂移管的温度是影响蒸发光散射检测器反应的基本参数,温度过低意味着流动相不能充分蒸发,导致基线水平过高,温度过高意味着流动相趋于完全蒸发,导致信噪比过高,也可能导致成分的部分分化使信号减弱[26-27]。由图2可知,在柱温(35 ℃)、流动相为乙腈:水=70:30的情况下,不同漂移管温度下,110 ℃比80 ℃的基线平稳性好,噪音也较小,且可溶性糖组分的峰面积均有所增加,因此漂移管温度选择110 ℃。

图2

图2   不同漂移管温度的可溶性糖色谱图

Fig.2   Chromatogram of soluble sugar at different drift tube temperatures


2.2 方法学考察结果分析
2.2.1 线性关系结果

按1.2.3对照品溶液制备的方法,分别配制浓度为10 mg/mL的果糖、葡萄糖、蔗糖、海藻糖、棉子糖单个对照品溶液,然后分别稀释至5个不同浓度(10、2、0.4、0.08和0.016 mg/mL)的标准液,在优化的试验色谱条件下依次进样10 μL,各3次,以峰面积为纵坐标y,对照品浓度为横坐标x,进行线性回归得到标准曲线方程y=ax+b,a、b为常数,回归方程、相关系数和线性范围见表1

表1   5种可溶性糖的回归方程、相关系数和线性范围

Table 1  Regression equation, correlation coefficient and linearity range for the five soluble sugars

组分Composition回归方程Regression equation相关系数Correlation coefficient线性范围Linearity range (mg/mL)
果糖Fructosey=2055.4x-31.8340.99980.016~10
葡萄糖Glucosey=2326.7x-5.29710.99980.016~10
蔗糖Sucrosey=2530.5x+120.210.99910.016~10
海藻糖Trehalosey=2623.6x-57.8381.00000.016~10
棉子糖Raffinosey=2250.1x-256.030.99900.016~10

新窗口打开| 下载CSV


2.2.2 精密度试验结果

精密吸取混合标准对照品溶液10 μL,按已优化的色谱条件连续进样6次,测定结果显示果糖、葡萄糖、蔗糖、棉子糖和海藻酸的峰面积测量的相对标准偏差(RSD)分别为0.69%、0.82%、0.35%、0.24%和0.66%,这说明色谱仪和检测器的精度很好,符合试验的要求。

2.2.3 重复性试验结果

取6份同一休眠前期党参根样品,按1.2.4方法制成供试品溶液,按1.2.1色谱条件进样分析,计算各成分的平均含量及RSD。结果显示果糖、葡萄糖、蔗糖、棉子糖和海藻糖的RSD分别为0.82%、0.54%、0.37%、0.97%、0.45%,表明该方法重复性良好,符合试验的要求。

2.2.4 稳定性试验结果

取同一休眠前期党参根样品溶液,分别在制备后0、2、8、12、16、20和24 h,按1.2.1色谱条件进行测定,结果显示果糖、葡萄糖、蔗糖、棉子糖和海藻糖峰面积的RSD(n=7)分别为1.17%、1.57%、0.31%、0.87%和0.60%,表明样品溶液稳定性好,可用于精准测定党参休眠芽各糖组分的含量。

2.2.5 加样回收率试验结果

取同一休眠前期党参根样品4份,其中1份做对照,另外3份分别添加果糖质量浓度为0.8 mg/mL、萄糖质量浓度为1.0 mg/mL、蔗糖质量浓度为1.1 mg/mL、海藻糖质量浓度1.0 mg/mL和棉子糖质量浓度为1.25 mg/mL的标准混合液1 mL放置一段时间后,按照已定的方法进行提取,测定各成分含量,考察各成分的回收率。用不加标准品的样品作为对照,重复测定5次,计算回收率,回收率(%)=(加标A测定值-A测定值)/加标量×100,结果显示,果糖回收率104.57%、葡萄糖102.88%、蔗糖105.20%、海藻糖102.53%、棉子糖101.20%,RSD值依次为0.72%、0.65%、0.69%、1.11%和0.69%。

2.3 党参自然休眠过程中5种可溶性糖组分的测定

将制备好的党参休眠前期的叶、茎、根和芽,休眠期的芽,解除休眠后芽的样品及标准样品溶液,按1.2.1的条件进行色谱分析。由图3可知,样品与标准品的出峰时间基本一致。

图3

图3   标准样品和党参样品色谱图

(a) 标准品;(b) 休眠前期根;(c) 休眠前期茎;(d) 休眠前期叶;(e) 休眠前期芽;(f) 休眠期芽;(g) 解除休眠后芽。

Fig.3   Chromatogram of standard and Codonopsis pilosula samples

(a) Standard sample; (b) Predormancy root; (c) Predormancy stem; (d) Predormancy leaf; (e) Predormancy bud; (f) Dormant bud; (g) Bud after release from dormancy.


2.3.1 休眠前期不同器官中可溶性糖含量变化

对休眠前期党参叶、茎、根和芽4个器官进行检测,结果见图4。叶中只含有果糖和葡萄糖,未检测到蔗糖,但二者含量均显著高于茎、根和芽。其原因是进入深秋季节,地下根需要储藏大量的物质和能量以度过严冬并保证第2年芽的萌发和生长,叶片光合作用持续合成大量的葡萄糖和果糖[28],葡萄糖和果糖在叶中进一步合成蔗糖,并将其快速转运至根部。在茎中检测到果糖、葡萄糖和蔗糖,但茎是物质运输的通道,其含量显著低于叶以及根和芽。根中的蔗糖含量最高,葡萄糖和果糖含量仅次于叶,除此之外,根中还检测到海藻糖和棉子糖,棉子糖的含量高于海藻糖,说明根部为了度过严冬合成了这2种抵抗逆境的可溶性糖。但休眠前期的芽中未检测到海藻糖和棉子糖,同时芽中的葡萄糖、果糖和蔗糖含量很低,仅高于茎,说明休眠前期的芽中只储存了少量的物质和能量。

图4

图4   休眠前期各器官内5种可溶性糖含量

不同小写字母表示差异显著(P < 0.05),下同。

Fig.4   Contents of the five soluble sugars in each organ during the pre-dormant period

Different lowercase letters show significant differences (P < 0.05), the same below.


2.3.2 不同休眠时期芽中的可溶性糖含量变化

不同休眠时期芽中的可溶性糖含量见图5,结果表明,休眠前期的芽中只含有果糖、葡萄糖和蔗糖且含量很低,休眠期的芽也检测到含量很低的果糖和葡萄糖,同时也检测到了根中的海藻糖,说明海藻糖也是休眠芽抗寒的主要物质之一。如图4所示,休眠前期的根和芽自身储藏的果糖和葡萄糖含量很少,休眠期芽的果糖和葡萄糖含量也很少,而蔗糖在休眠前期的根和休眠期的芽中含量均很高,说明芽萌发时主要依靠根中储存的蔗糖、葡萄糖和果糖提供大量物质和能量。在芽解除休眠开始生长后,海藻糖和棉子糖消失,但果糖、葡萄糖和蔗糖含量在这个时期显著增加,含量最高,说明这3种可溶性糖是芽生长的主要物质和能量来源。

图5

图5   不同休眠时期芽内5种可溶性糖含量

Fig.5   Contents of five soluble sugars in buds in different dormancy periods


3 讨论

3.1 海藻糖和棉子糖是党参抗寒的主要物质

在水稻幼苗、拟南芥、葡萄幼苗叶中观察到,在遇到胁迫时海藻糖含量会增加,以保证正常生命活动[29-30]。当外界条件发生变化,机体从休眠状态复苏时,海藻糖可以迅速分解,在机体的复苏中发挥决定性作用[31]。本试验研究表明,休眠前期的芽中不含海藻糖,而在寒冬时期植物进入休眠期,海藻糖含量显著升高,在解除休眠后海藻糖迅速分解,这一变化与前人[30-31]报道一致。

关于咖啡树[32]和茶树[33]的研究显示,在遭受非生物胁迫时,棉子糖的合成酶基因表达会升高,植物通过大量积累棉子糖来抵御逆境胁迫带来的损伤。本研究在休眠前期根中检测到大量的棉子糖。因此,棉子糖也是主要的抗寒物质。

3.2 海藻糖和棉子糖合成的主要部位

根作为植物水分吸收、运输及养分和能量存储的一个重要器官,会直接影响植物的耐寒性。当深秋气温逐渐降低,植物进入休眠前期,根受到寒冷胁迫,合成抵抗逆境的可溶性糖,因此在休眠前期,根中不仅检测到高含量的蔗糖、果糖和葡萄糖,同时还检测到海藻糖和棉子糖,说明根通过合成海藻糖和棉子糖的方式来应对胁迫,但在休眠前期的芽中并未检测到这2种糖。随着气温进一步降低,根中海藻糖转运到休眠期的芽中以帮助芽度过寒冷时期。张丹[34]在研究木薯中海藻糖合成酶基因时发现,在应对干旱胁迫时根部相对表达量上升幅度大,而在茎和叶中的上升非常微小,认为抗旱性较强的品种在应对干旱时,优先保护根系,这与本研究结果相似。

4 结论

本试验建立了党参自然休眠过程中不同器官果糖、葡萄糖、蔗糖、海藻糖和棉子糖同时分离检测的HPLC-ELSD方法,最佳条件为Analysis Column(4.6 mm×250 mm 5-Micron)色谱柱,流动相为乙腈:水(体积比70:30)溶液,柱温35 ℃,流速为1.0 mL/min;ELSD参数:雾化温度50 ℃,漂移管温度为110 ℃,氮气流速为2.2 mL/min,增益值1.0。海藻糖和棉子糖是党参抗寒的主要可溶性糖组分,其中海藻糖在根中合成并进一步转运至芽中;果糖、葡萄糖和蔗糖是党参根中储存的主要物质和能量,也是芽萌发的物质和能量来源。

参考文献

Reyes-Diaz M, Alberdi M, Piper F, et al.

Low temperature responses of Nothofagus dombeyi and Nothofagus nitida, two evergreen species from south central Chile

Tree Physiology, 2005, 25(11):1389-1398.

PMID:16105806      [本文引用: 1]

Nothofagus dombeyi (Mirb.) Blume and Nothofagus nitida (Phil.) Krasser are closely related evergreen trees native to south central Chile. Nothofagus dombeyi is a pioneer in habitats subject to high daytime irradiances and nighttime freezing temperatures and has a wider altitudinal and latitudinal distribution than N. nitida, which is restricted to more oceanic climates. We postulated that N. dombeyi has a greater cold-acclimation capacity, expressed as a greater capacity to maintain a functional photosynthetic apparatus at low temperatures, than N. nitida. Because cold-acclimation may be related to the accumulation of cryoprotective substances, we investigated relationships between ice nucleation temperature (IN), freezing temperature (FT), and the temperature causing injury to 50% of the leaf tissues (LT(50)) on the one hand, and concentrations of total soluble carbohydrates (TSC), starch and proline on the other hand. Observations were made throughout a seasonal cycle in adults and seedlings in the field and in seedlings in the laboratory under cold-acclimation inductive and non-inductive conditions. In adults, LT(50) values were lower in N. dombeyi than in N. nitida, suggesting that N. dombeyi is the more frost tolerant species. Adults of both species tolerated freezing in autumn and winter but not in spring and summer. In the fall and winter, seedlings of N. dombeyi had a much lower LT(50) than those of N. nitida. Nothofagus nitida seedlings, in autumn and winter, exhibited freezing avoidance mechanisms. Although elevated TSC and proline concentrations may contribute to freezing tolerance in adults of both species, an increase in proline concentration is unlikely to be the dominant frost tolerance response in adults because proline concentrations were higher in N. nitida than in N. dombeyi. In seedlings, however, there were large differences in proline accumulation between species that may account for the difference between them in freezing tolerance. Starch concentration in both species decreased during winter. Chlorophyll fluorescence indicated that maximal photochemical efficiency (F(v)/F(m)) remained at optimal values (~0.8) throughout the year. The effective photochemical efficiency of PSII (PhiPSII) and relative electron transport rates (ETR(r)) decreased in winter in both species. In seedlings, fluorescence parameters were more affected in winter in N. nitida than in N. dombeyi. We concluded that adults and seedlings of N. dombeyi are hardier than adults and seedlings of N. nitida, which is consistent with its wider latitudinal and altitudinal distribution.

Benina M, Obata T, Mehterov N, et al. Comparative metabolic profiling of Haberlea rhodopensis, Thellungiella halophyla, and Arabidopsis thaliana exposed to low temperature. Frontiers in Plant Science, 2013, 4:499.

[本文引用: 1]

Ruan Y L.

Sucrose metabolism: gateway to diverse carbon use and sugar signaling

Annual Review of Plant Biology, 2014, 65:33-67.

[本文引用: 1]

陈宏艳, 李小二, 李忠光.

糖信号及其在植物响应逆境胁迫中的作用

生物技术通报, 2022, 38(7):80-89.

DOI:10.13560/j.cnki.biotech.bull.1985.2021-1289      [本文引用: 2]

糖不仅是植物细胞的碳源、能源和结构物质,也是一种信号分子,在植物生长发育及响应逆境胁迫中起重要作用。非生物逆境如高温、低温、干旱、盐渍和重金属胁迫是限制作物产量的主要胁迫因子,糖作为信号分子在植物响应这些胁迫因子中的确切机理,尚未清楚。基于植物中糖信号转导途径及其在植物耐逆性形成中作用的最新研究进展,归纳了植物中分别依赖己糖激酶(HXK)、G蛋白信号1调节子(RGS1)、糖酵解(EMP)和磷酸戊糖途径(PPP)的糖信号转导途径,讨论了糖信号在植物耐逆性包括耐热性、耐冷性、耐旱性、耐盐性和重金属胁迫耐性形成中的作用,最后展望了糖信号在植物生物学领域的研究方向。

岳川. 茶树糖类相关基因的挖掘及其在茶树冷驯化中的表达研究. 北京: 中国农业科学院, 2015.

[本文引用: 1]

杨平, 李敏惠, 潘克俭, .

海藻糖的生物合成与分解途经及其生物学功能

生命的化学, 2006, 26(3):233-236.

[本文引用: 1]

Sharma M, Banday Z Z, Shukla B N, et al.

Glucose-regulated HLP1 acts as a key molecule in governing thermomemory

Plant Physiology, 2019, 180(2):1081-1100.

DOI:10.1104/pp.18.01371      PMID:30890662      [本文引用: 1]

Induction of heat shock proteins (HSPs) in response to heat stress (HS) is indispensable for conferring thermotolerance. Glc, a fundamental signaling and metabolic molecule, provides energy to stressed seedlings to combat stress. The recovery of stressed plants from detrimental HS in response to Glc is largely mediated by HSPs, but the mechanistic basis of this thermotolerance is not well defined. In this study, we show that Glc has a prominent role in providing thermotolerance. Glc-mediated thermotolerance involves HSP induction via the TARGET OF RAPAMYCIN (TOR)-E2Fa signaling module. Apart from HSPs, TOR-E2Fa also regulates the Arabidopsis () ortholog of human, named - (). Expression of :: in the shoot apical meristem (SAM) after HS coincides with TOR-E2Fa expression, substantiating a role for TOR-E2Fa-HLP1 in providing thermotolerance. We also demonstrate that Glc along with heat could induce proliferation activity in the SAM after HS recovery, which was arrested by the TOR inhibitor AZD-8055. Molecular and physiological studies suggest that HS-activated heat stress transcription factor A1s also positively regulate transcription, suggesting convergence of the Glc and HS signaling pathways. Loss of functional HLP1 causes HS hypersensitivity, whereas HLP1 overexpressors display increased thermotolerance. HLP1 binds to the promoters of Glc-regulated HS-responsive genes and promotes chromatin acetylation. In addition, Glc modifies the chromatin landscape at thermomemory-related loci by promoting H3K4 trimethylation (H3K4me3). Glc-primed accumulation of H3K4me3 at thermomemory-associated loci is mediated through HLP1. These findings reveal the novel function of Glc-regulated in mediating thermotolerance/thermomemory response.© 2019 American Society of Plant Biologists. All Rights Reserved.

Saksena H B, Sharma M, Singh D, et al.

The versatile role of glucose signalling in regulating growth, development and stress responses in plants

Journal of Plant Biochemistry and Biotechnology, 2020, 29(4):687-699.

[本文引用: 1]

Cisse A. 蔗糖影响水稻耐热性的作用机理研究. 北京: 中国农业科学院, 2020.

[本文引用: 1]

黄紫嫣, 王婧, 丁华, .

全自动还原糖测定仪法与斐林试剂滴定法对比研究

湖北农业科学, 2019, 58(增2):398-402.

[本文引用: 1]

刘胜辉, 魏长宾, 孙光明, .

高效液相色谱法测定台农6号菠萝果实中的糖分

食品科学, 2009, 30(12):162-164.

DOI:10.7506/spkx1002-6630-200912033      [本文引用: 1]

采用高效液相色谱法测定台农6 号菠萝果实中糖分含量的方法。以90% 乙醇作为提取液,色谱柱为CHO-820(钙型)糖柱(300mm &times; 7.8mm),柱温90℃,流动相为超纯水,流速0.5ml/min,进样体积10&mu;l,用示差折光检测器检测菠萝果实中的糖分。本方法的相对标准偏差为0.59%~0.85%,相关系数在0.9998 以上,加标回收率为98.84%~100.6%。台农6 号菠萝果肉含糖量与成熟季节有关,夏季果(7 月成熟)和秋季果(9 月成熟)含蔗糖最高,其次为葡萄糖和果糖,冬季果葡萄糖含量最高、蔗糖含量最低。

张淋洁, 王如伟, 何厚洪, .

高效液相色谱―蒸发光散射法测定铁皮石斛中单糖和双糖

医药导报, 2013, 32(4):517-520.

[本文引用: 1]

Gibson S I.

Plant sugar-response pathways

Part of a complex regulatory web. Plant Physiology, 2000, 124(4):1532-1539.

[本文引用: 1]

王静, 王睛, 向文胜.

色谱法在糖类化合物分析中的应用

分析化学, 2001, 29(2):222-227.

[本文引用: 1]

施红林, 王保兴, 杨光宇, .

高效液相色谱法测定烟草中的糖

分析化学, 2002, 30(3):384.

[本文引用: 1]

李忠, 杨光宇, 黄海涛, .

高效液相色谱法测定烟草料液中的糖、甘油和丙二醇

分析化学, 2002, 30(6):687-689.

[本文引用: 1]

郑春英, 李庆勇, 祖元刚.

HPLC-ELSD法测定甘草中单糖的含量

东北林业大学学报, 2006, 34(2):109-110.

[本文引用: 1]

徐瑾, 张庆合, 张维冰, .

液相色谱荧光衍生法在糖类物质分析中的应用

色谱, 2003, 21(2):115-120.

[本文引用: 1]

介绍了目前在液相色谱荧光衍生法分析糖类物质中常用的几类荧光衍生试剂及相应的衍生方法,对近期糖类物质分离分析中的液相色谱荧光检测方法做了系统综述。引用文献60篇。

刘云惠.

高效液相色谱内标法分离和测定植物中的单糖

色谱, 2000, 18(6):556-558.

[本文引用: 1]

建立了一种以 β 吲哚乙酸为内标物,用高效液相色谱内标法直接分离和测定植物中游离糖的新方法。木糖、果糖、葡萄糖、蔗糖、麦芽糖、乳糖和棉子糖的分离在 18min内完成 ;检出限分别达到 1 8μg,2 3μg,2 7μg,1 8μg,3 5 μg,4 1μg和 4 3μg,线性范围为 5 μg/L~ 75 0 μg/L。研究了流动相中乙腈的浓度、pH值对分离 7种糖和 β 吲哚乙酸的影响。方法用于枣和苹果样品的测定并进行回收率试验,结果为木糖、果糖、葡萄糖、蔗糖的 5次测定的回收率分别为 97 4%~ 10 2 1%,97 3%~ 10 1 8%,98 7%~ 10 2 2 %,97 7%~ 10 2 5 %,。

魏泱, 丁明玉.

液相色谱/蒸发光散射测定转基因烟草提取液中的海藻糖

色谱, 2001, 19(3):226-229.

[本文引用: 1]

采用乙二胺动态修饰硅胶柱分离、蒸发光散射检测器测定了转基因烟草提取液中的糖。 4种糖的峰面积标准曲线在 10 0mg/L~ 15 0 0mg/L范围内均具有良好的线性关系。所建立的方法对果糖、葡萄糖、蔗糖、海藻糖的检测下限分别为 10mg/L,2 0mg/L,10mg/L和 10mg/L。

罗进, 夏敏, 叶能胜, .

HPLC-ELSD同时测定食品中5种糖含量

食品科学, 2010, 31(8):226-229.

DOI:10.7506/spkx1002-6300-201008051      [本文引用: 1]

建立高效液相色谱- 蒸发光散射法(HPLC-ELSD)同时测定食品中果糖、葡萄糖、蔗糖、麦芽糖和乳糖的方法。以Waters-NH2(4.6mm &times; 250mm,5&mu;m)色谱柱;乙腈:水=75:25(V/V)为流动相,流速为1.0mL/min,ELSD为检测器,漂移管温度45℃,N2 流量25psi。待测组分与其他组分分离度良好(R > 1.5),果糖、葡萄糖、蔗糖、麦芽糖和乳糖在50~2000&mu;g/mL 内有良好的线性关系,精密度RSD 小于3.8%,回收率大于80.3%。本方法在20min内完成了5 种糖的分离,结果比较理想,可作为糖类食品的质量控制和安全评价的测定方法。

辛秀兰, 李小萍, 马越, .

HPLC-ELSD法测定红树莓果实中水溶性糖含量

吉林农业大学学报, 2009, 31(5):624-627.

[本文引用: 1]

程勇, 李庆廷, 李剑政, .

Prevail糖柱-HPLC-ELSD法测定烟草中水溶性糖

烟草科技, 2010(3):32-37.

[本文引用: 1]

宋晓晖, 谢凯, 李艳丽, .

HPLC-ELSD法测定梨果实中不同种类可溶性糖含量

南京农业大学学报, 2012, 35(2):87-91.

[本文引用: 1]

李威涛, 郭建斌, 喻博伦, .

基于HPLC-RID的花生籽仁可溶性糖含量检测方法的建立

作物学报, 2021, 47(2):368-375.

DOI:10.3724/SP.J.1006.2021.04110      [本文引用: 1]

食用型花生是我国乃至世界范围内花生育种的重要方向之一, 但是花生遗传改良中缺乏与食用品质相关的可溶性糖含量的快速检测方法, 限制了食用花生育种进展。本研究建立了80%乙醇和水浴快速提取花生籽仁可溶性糖的方法, 该提取方法与国标法相比, 简化了样品前期处理步骤, 加快了提取进度。通过准确性和重复性试验对该方法的验证表明, 该方法的重复性较好, 而且准确有效。以20份花生品种为材料, 利用高效液相-示差折光法对该方法提取的样品和国标法提取的样品进行检测发现, 成熟花生籽仁中的可溶性糖主要是蔗糖, 葡萄糖和果糖很少, 2种方法测定的结果差异不显著。利用本研究建立的方法检测20份花生品种的结果显示, 蔗糖含量最低为16.19 mg g<sup>-1</sup>, 最高为83.81 mg g<sup>-1</sup>, 平均为30.41 mg g<sup>-1</sup>。利用国标法检测的结果显示, 蔗糖含量最低为15.60 mg g<sup>-1</sup>, 最高为81.38 mg g<sup>-1</sup>, 平均为30.20 mg g<sup>-1</sup>。这些检测结果, 一方面进一步验证了所建立方法的实用性, 另一方面也表明这些花生品种中的蔗糖含量差异较大。

曹进, 徐燕, 张永知, .

清开灵注射液HPLC/ELSD指纹图谱建立及质量相关性研究

分析化学, 2004, 32(4):469-473.

[本文引用: 1]

詹园凤, 贺滉, 党选民.

HPLC-ELSD法测定礼品西瓜果实可溶性糖的种类和含量

南方农业学报, 2014, 45(11):2005- 2008.

[本文引用: 1]

黄熊娟. 钾氮肥施用量影响微胚乳超高油玉米产量及含油率机理的研究. 南宁:广西大学, 2006.

[本文引用: 1]

Liu H L, Dai X Y, Xu Y Y, et al.

Over-expression of OsUGE-1 altered raffinose level and tolerance to abiotic stress but not morphology in Arabidopsis

Journal of Plant Physiology, 2007, 164(10):1384-1390.

[本文引用: 1]

Li Y, Lee K K, Walsh S, et al.

Establishing glucose- and ABA- regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine

Genome Research, 2006, 16(3):414-427.

[本文引用: 2]

王成君, 林建平, 岑沛霖.

高效液相色谱法快速检测海藻糖

江南大学学报(自然科学版), 2005, 4(5):86-89.

[本文引用: 2]

Dos Santos T B, Budzinski I G F, Marur C J, et al.

Expression of three galactinol synthase isoforms in Coffea arabica L. and accumulation of raffinose and stachyose in response to abiotic stresses

Plant Physiology and Biochemistry, 2011, 49(4):441- 448.

DOI:10.1016/j.plaphy.2011.01.023      PMID:21330144      [本文引用: 1]

Galactinol synthase (EC 2.4.1.123; GolS) catalyzes the first step in the synthesis of raffinose family oligosaccharides (RFOs). Their accumulation in response to abiotic stresses implies a role for RFOs in stress adaptation. In this study, the expression patterns of three isoforms of galactinol synthase (CaGolS1-2-3) from Coffea arabica were evaluated in response to water deficit, salinity and heat stress. All CaGolS isoforms were highly expressed in leaves while little to no expression were detected in flower buds, flowers, plagiotropic shoots, roots, endosperm and pericarp of mature fruits. Transcriptional analysis indicated that the genes were differentially regulated under water deficit, high salt and heat stress. CaGolS1 isoform is constitutively expressed in plants under normal growth conditions and was the most responsive during all stress treatments. CaGolS2 is unique among the three isoforms in that it was detected only under severe water deficit and salt stresses. CaGolS3 was primarily expressed under moderate and severe drought. This isoform was induced only at the third day of heat and under high salt stress. The increase in GolS transcription was not reflected into the amount of galactinol in coffee leaves, as specific glycosyltransferases most likely used galactinol to transfer galactose units to higher homologous oligosaccharides, as suggested by the increase of raffinose and stachyose during the stresses.Copyright © 2011 Elsevier Masson SAS. All rights reserved.

Yue C, Cao H L, Wang L, et al.

Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season

Plant Molecular Biology, 2015, 88(6):591-608.

DOI:10.1007/s11103-015-0345-7      PMID:26216393      [本文引用: 1]

Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed.

张丹. 木薯海藻糖合成酶基因MeTPS1-3的克隆与功能分析. 海口:海南大学, 2013.

[本文引用: 1]

/