作物杂志, 2025, 41(4): 173-180 doi: 10.16035/j.issn.1001-7283.2025.04.022

生理生化·植物营养·栽培耕作

不同时期施用脱落酸对玉米籽粒灌浆和脱水的影响

王兴亚,1, 陈宇涵2, 张孟雯2, 孙琳琳1, 陈利容1, 郭玉秋1, 龚魁杰,1

1山东省农业科学院作物研究所,250100,山东济南

2中国农业大学农学院,100193,北京

The Effects of ABA Application at Different Stages on Maize Grain Filling and Dehydration

Wang Xingya,1, Chen Yuhan2, Zhang Mengwen2, Sun Linlin1, Chen Lirong1, Guo Yuqiu1, Gong Kuijie,1

1Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, Shandong, China

2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

通讯作者: 龚魁杰,研究方向为谷物营养与质量安全,E-mail:gongkj@sina.com

收稿日期: 2024-05-6   修回日期: 2024-09-12   网络出版日期: 2025-01-21

基金资助: 山东省自然科学基金青年项目(ZR2021QC012)
山东省玉米产业技术体系(SDAIT-02-11)

Received: 2024-05-6   Revised: 2024-09-12   Online: 2025-01-21

作者简介 About authors

王兴亚,研究方向为玉米产后减损与质量安全,E-mail:wangyaya2013@163.com

摘要

以不同脱水类型玉米品种(生理脱水慢品种郑单958,生理脱水快品种京农科728和迪卡517)为试验材料,采用大田和盆栽试验,分别在灌浆中期(吐丝后20 d)和后期(吐丝后40 d左右)施用脱落酸(ABA),研究ABA对籽粒脱水的调控效应以及调控时期。结果表明,灌浆中期施用ABA后,和清水对照(CK)相比,郑单958和生理脱水快品种(京农科728和迪卡517)在大田和盆栽试验中的平均产量分别提高5.4%和8.2%,平均千粒重分别提高5.7%和9.0%,施用ABA能够通过提高玉米千粒重和产量,生理脱水快的品种京农科728反应更加敏感。灌浆中期施用ABA会加速各品种玉米生长发育进程,提高收获时籽粒干重并降低籽粒含水量,生理脱水快的品种效果比较显著。与CK相比,生理脱水快的玉米品种生殖生长期平均缩短了4 d,灌浆速率平均提高了9.2%,收获时籽粒干物质积累量平均提高了5.4%,籽粒含水量平均降低了7.6%。灌浆后期施用ABA,各品种产量、生育进程、灌浆速率及脱水速率均无显著变化。综上,ABA能够提高玉米产量,促进玉米籽粒脱水,且ABA调控玉米籽粒脱水的关键生育期为灌浆中期。

关键词: 玉米; ABA; 产量; 籽粒含水量; 籽粒脱水速率; 机械化粒收

Abstract

Using maize varieties with different dehydration types (physiologically slow dehydration variety Zhengdan 958 and physiologically fast dehydration varieties Jingnongke 728 and Dika 517) as experimental materials, field and pot experiments were conducted to apply abscisic acid (ABA) during the mid (20 days after silking) and late grain-filling stages (around 40 days after silking), aiming to investigate the regulatory effects and regulatory periods of ABA on grain dehydration. Results showed that, compared with the water control (CK), the application of ABA during the mid grain-filling stage led to a 5.4% and 8.2% increase in average yield, and a 5.7% and 9.0% increase in average 1000-grain weight for Zhengdan 958 and fast dehydration varieties (Jingnongke 728 and Dika 517) in field and pot experiments, respectively. ABA enhanced maize yield by improving 1000-grain weight, with a more pronounced effect observed in fast dehydration variety Jingnongke 728. ABA application during the mid grain-filling stage shortened the growth period of maize, increased grain dry weight at harvest, and reduced grain moisture content, with more significant effects observed in fast dehydration varieties. Compared with the CK, the reproductive growth period of fast dehydration varieties was shortened by four days, the grain filling rate increased by 9.2%, the grain dry matter accumulation at harvest increased by 5.4%, and the grain moisture content at harvest decreased by 7.6% on average. Applying ABA during the late grain-filling stage did not result in significant changes in yield, growth progress, grain filling rate, and dehydration rate across the varieties. In summary, ABA can increase maize yield and promote grain dehydration, with the key growth stage for ABA regulation of maize grain dehydration being the mid-grain filling stage.

Keywords: Maize; ABA; Yield; Grain moisture content; Grain dehydration rate; Mechanical grain harvesting

PDF (497KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王兴亚, 陈宇涵, 张孟雯, 孙琳琳, 陈利容, 郭玉秋, 龚魁杰. 不同时期施用脱落酸对玉米籽粒灌浆和脱水的影响. 作物杂志, 2025, 41(4): 173-180 doi:10.16035/j.issn.1001-7283.2025.04.022

Wang Xingya, Chen Yuhan, Zhang Mengwen, Sun Linlin, Chen Lirong, Guo Yuqiu, Gong Kuijie. The Effects of ABA Application at Different Stages on Maize Grain Filling and Dehydration. Crops, 2025, 41(4): 173-180 doi:10.16035/j.issn.1001-7283.2025.04.022

中国玉米机械化收获水平相对较低,2023年达到80%,且以收穗为主,收粒率仅占机收面积的15%左右,远低于西方发达国家水平[1-2]。因此,提高机械化收粒率是我国玉米生产中亟待解决的关键问题,也是实现玉米高产和可持续性发展所面临的重要挑战[3-5]。研究[6-8]表明,制约中国玉米实现机械化粒收的关键因素是籽粒含水量偏高(30%~ 40%),较高的籽粒含水量会导致破碎率偏高,而收获时籽粒含水量由品种的脱水特性和收获时间共同决定。在美国,玉米从生理成熟到收获有大约1个月的站秆时间,收获时的籽粒含水量在15%~ 25%[9]。而我国由于复杂的生态条件和特殊的一年两熟种植模式,通过延长站秆时间来降低籽粒含水量的潜力有限。因此,研究如何加速玉米籽粒灌浆过程中的生理脱水具有重要意义。

脱落酸(ABA)作为植物的信号传递物质,对作物的生长发育有重要的调控作用[10-11],与作物的含水量有密切关系。以往关于ABA与作物含水量关系的研究多集中在干旱等逆境胁迫上[12-13],有关ABA调控玉米籽粒脱水的研究相对较少。目前,关于ABA与籽粒灌浆及物质生产的关系在水稻中研究较多,而籽粒灌浆和脱水密切相关[14-15]。在玉米中通过对2种不同类型的玉米品种喷施外源ABA,利用高通量转录组测序后发现,脱水较快的玉米品种中有更多参与ABA调控籽粒脱水的基因在表达水平上发生了显著变化,而不同脱水类型玉米品种ABA含量出现差异的时间为灌浆中后期[16-17]。研究[18-19]表明,籽粒脱水过程与ABA有着极为密切的关系,但ABA对籽粒脱水的调控效应以及调控时期仍不明确。

因此,本研究根据前期筛选出的不同脱水类型玉米品种,在不同时期(灌浆中期和后期)喷施外源ABA,对照喷施清水,重点研究ABA对玉米籽粒灌浆、脱水及产量的调控效应及调控时期。本研究对降低玉米籽粒含水量、提高玉米机械化粒收水平、促进产业可持续性发展具有重要意义。

1 材料与方法

1.1 试验地概况

试验于2022年进行,分为大田和盆栽试验。大田试验在山东省农业科学院作物研究所枣园试验基地(117.5°E,36.7°N)开展,盆栽试验在山东省农业科学院作物研究所历城试验基地(117.1°E,36.7°N)开展。试验地均为黄淮海地区典型的夏玉米―冬小麦一年两熟种植制度地区。

该地区气候类型为温带大陆性季风气候,土壤类型为冲击型盐化潮土。0~40 cm的基础地力为有机质15.5 g/kg、全氮1.0 g/kg、速效磷23.5 mg/kg、速效钾171.9 mg/kg。2022年试验期间的气象数据见图1

图1

图1   2022年玉米生长季最高温、最低温和降水量

Fig.1   Daily maximum temperature (Tmax), minimum temperature (Tmin) and precipitation during maize growing season in 2022


1.2 试验设计

1.2.1 大田试验

采用随机区组试验设计,供试材料为2种不同类型的玉米品种,分别是生理脱水慢品种郑单958(ZD958)、生理脱水快的宜机收品种京农科728(JNK728)和迪卡517(DK517)。于2022年6月18日播种,分别在灌浆中期(吐丝后20 d)和灌浆后期(吐丝后40 d)于晴天16:00- 17:00对各品种的玉米穗及穗位叶抹施5 mL ABA溶液(100 μmol/L)。对照(CK)抹施5 mL清水,用0.5%的吐温20作为展开剂。试验共12个处理,设3个重复,共36个小区。每个小区面积60 m2,等行距种植,行距60 cm,种植密度为75 000株/hm2。大田施氮量为180 kg/hm2,分基肥和大喇叭口期追肥2次施入,每次施90 kg/hm2。根据土壤水分情况决定是否进行灌溉。在玉米吐丝之前,选取生长健壮、长势均匀一致的植株进行挂牌和套袋,在吐丝后5~6 d,人工辅助统一完成授粉。

1.2.2 盆栽试验

于2022年6月25日播种,试验材料设置2种不同类型的玉米品种,分别为生理脱水慢品种ZD958和生理脱水快的宜机收品种JNK728,分别在灌浆中期(吐丝后20 d)和灌浆后期(吐丝后34 d)于晴天16:00-17:00对各品种的玉米穗及穗位叶抹施5 mL ABA溶液(100 μmol/L),对照(CK)抹施5 mL清水,用0.5%的吐温20作为展开剂。

盆栽种植选用的盆子直径30 cm,深30 cm,土壤选取当地的20 cm耕层土,筛土后按耕层土与基质土3:1的比例同基质土混匀,每盆装土约10 kg。种子播深3 cm,每盆播种1穴(每穴3粒),在3~4叶时定苗到每穴2株,5~6叶定苗为每盆1株;盆子的摆放按照行距60 cm,行内的盆间距和株距与盆子的直径相同,即30 cm,随机排列,每个处理种植40盆,共320盆。每千克土壤按N:P: K=0.15 g:0.10 g:0.15 g的比例进行施肥,其中磷肥、钾肥在装盆时一次性施入,氮肥分2次施入,比例为苗期:大喇叭口期=50%:50%。在玉米吐丝前,选取生长健壮、长势均匀一致的植株进行挂牌和套袋,吐丝后5~6 d,人工辅助统一完成授粉。

1.3 测定项目与方法
1.3.1 籽粒脱水特性

分别从灌浆中期和灌浆后期开始取样。每隔7 d取样一次,直至生理成熟。每次选取6个整齐的玉米穗进行测定。脱粒称籽粒鲜重之后,将所有籽粒用75 ℃烘箱烘至恒重测定籽粒干重,计算籽粒含水量。

籽粒含水量(%)=(籽粒鲜重-籽粒干重)/籽粒鲜重×100。

1.3.2 籽粒灌浆特性

取样时间与频率同脱水特性保持一致。每次选取6个整齐且长势均匀的玉米穗,选取穗中部100个籽粒进行脱粒,脱下的籽粒用75 ℃烘箱烘至恒重,测定百粒干重。

灌浆速率(g/d·100粒)=[干重(t2)-干重(t1)]/(t2-t1),式中,t1t2分别表示前后2次取样时间。

1.3.3 考种及测产

玉米生理成熟后,大田试验中每个小区划测产区,选择2行,每行10 m进行测产,并选择具有代表性的20个果穗进行考种,测定穗粒数和千粒重,将籽粒烘干,折合至14%水分计算产量。盆栽试验中,各处理选择6个长势均匀且具有代表性的玉米穗进行考种,测穗粒数和千粒重等指标,最后将籽粒进行烘干测产。

1.4 数据处理

使用SPSS 26.0软件,采用单变量方差分析法评估品种和ABA处理对产量、籽粒脱水和灌浆特性的影响。使用Microsoft Excel 2021作图。

2 结果与分析

2.1 ABA对不同玉米品种产量及其构成因素的影响

灌浆中期ABA处理对产量、千粒重和收获指数均有显著影响(表1)。与CK处理相比,施用ABA后ZD958、JNK728和DK517的产量分别提升5.2%、9.1%和5.9%;ZD958和JNK728的穗粒数均无显著变化,DK517的穗粒数提高了7.6%。施用ABA主要提高了千粒重,ZD958、JNK728和DK517的千粒重分别提升了8.2%、12.5%和3.8%,JNK728提高幅度较大。由于产量的显著增加,收获指数均显著提高。JNK728对ABA响应比较敏感,千粒重提高幅度较大,导致产量提高幅度较大。灌浆后期施用ABA后对产量均无显著影响。

表1   大田试验不同生育期施用ABA对不同玉米品种产量及其构成因素的影响

Table 1  Effects of ABA application at different growth stages on yield and its components of different maize varieties in field experiment

时期
Stage
品种
Variety
处理
Treatment
产量
Yield (kg/hm2)
穗粒数
Kernel number per ear
千粒重
1000-grain weight (g)
收获指数
Harvest index
灌浆中期Mid-filling stageZD958CK13 801.4±435.8b530.7±19.5a296.2±2.5b0.53±0.00b
ABA14 517.0±92.6a530.0±7.3a320.5±1.8a0.55±0.01a
JNK728CK12 655.5±205.4b445.3±11.8a333.5±1.8b0.53±0.00b
ABA13 800.1±366.2a453.2±8.7a375.1±11.5a0.57±0.01a
DK517CK11 167.4±17.4b460.9±8.6b316.4±2.6b0.53±0.01b
ABA11 826.1±9.7a497.1±3.0a328.4±2.7a0.56±0.01a
灌浆后期Late-filling stageZD958CK13 840.7±101.5a528.6±1.1a299.5±1.0a0.49±0.02a
ABA13 116.5±298.3b520.8±2.1b298.1±1.0a0.48±0.01a
JNK728CK12 541.4±171.9a449.0±1.0a339.6±3.5a0.52±0.02a
ABA12 798.1±174.1a453.2±1.3a343.2±1.0a0.53±0.03a
DK517CK10 870.2±221.7a447.2±1.0a311.7±1.7a0.51±0.01a
ABA11 021.5±436.8a451.6±2.0a306.8±1.5a0.51±0.01a

不同小写字母代表P < 0.05水平下差异显著,下同。

Different lowercase letters represent significant differences under P < 0.05 level, the same below.

新窗口打开| 下载CSV


盆栽试验与大田试验表现一致,灌浆中期ABA处理对产量、千粒重和收获指数均有显著影响(表2)。相比于CK处理,ZD958和JNK728产量分别提升5.6%和9.6%。从产量构成因素来看,施用ABA后,ZD958和JNK728的穗粒数均无显著变化,主要提升了千粒重,分别提升了3.2%和10.8%,JNK728提升幅度较大。由于产量的显著提高,收获指数均显著提高。2个玉米品种中JNK728对ABA响应更为敏感,千粒重、产量和收获指数提升幅度较大。灌浆后期施用ABA后对产量及其构成因素均无显著影响。

表2   盆栽试验不同生育期施用ABA对不同玉米品种产量及其构成因素的影响

Table 2  Effects of ABA application at different growth stages on grain yield and its components of different maize varieties in pot experiment

时期
Stage
品种
Variety
处理
Treatment
产量
Yield (kg/hm2)
穗粒数
Kernel number per ear
千粒重
1000-grain weight (g)
收获指数
Harvest index
灌浆中期Mid-filling stageZD958CK13 875.3±6.7b549.6±10.2a285.7±0.7b0.50±0.00b
ABA14 651.7±336.2a556.9±5.1a294.8±0.3a0.54±0.01a
JNK728CK12 799.9±192.6b483.2±3.2a316.2±1.5b0.51±0.01b
ABA14 030.1±79.8a477.1±0.5a350.3±0.4a0.56±0.02a
灌浆后期Late-filling stageZD958CK13 432.9±174.6a545.2±2.8a281.4±0.8a0.49±0.02a
ABA13 652.9±325.2a543.8±0.2a276.4±0.5a0.50±0.02a
JNK728CK12 428.9±299.0a479.5±2.5a311.6±1.9a0.51±0.01a
ABA12 327.9±345.2a485.6±4.0a306.8±0.5a0.51±0.01a

新窗口打开| 下载CSV


2.2 ABA对不同玉米品种生长发育进程的影响

灌浆中期施用ABA后,各玉米品种的生育期均有一定程度的缩短(图2)。在大田试验中,与CK处理相比,施用ABA后ZD958、JNK728和DK517的生育期分别缩短2、4和4 d,生理脱水快的品种缩短幅度较大;盆栽试验和大田试验表现一致,与CK处理相比,施用ABA后ZD958和DK517的生育期分别缩短2和4 d,生理脱水较快的品种缩短幅度较大。灌浆后期施用ABA后,大田和盆栽试验中ABA处理的各玉米品种的生育期同CK处理相比均无明显差异。

图2

图2   大田与盆栽试验不同生育期施用ABA对不同玉米品种生育期的影响

Fig.2   Effects of ABA application at different growth stages on growth stage of different maize varieties in field and pot experiments


2.3 ABA对不同玉米品种籽粒灌浆的影响

图3所示,在大田试验中,各玉米品种从吐丝后20 d开始,随着天数增加,籽粒干物质积累量均呈快速上升至逐渐减慢的趋势。灌浆中期,各品种ABA处理的籽粒干物质积累量较CK处理均有所升高。其中,ZD958在施用后28 d(吐丝后48 d)开始籽粒干物质积累量显著提高,而JNK728和DK517在施用后7和20 d(吐丝后27和40 d)开始显著提升。施用ABA对不同脱水类型玉米品种籽粒干物质积累的影响不同,生理脱水较快的品种更加敏感。从吐丝后20 d至收获期,ABA处理的ZD958、JNK728和DK517平均灌浆速率分别为0.54、0.60、0.56 g/d∙100粒。喷施ABA后,JNK728和DK517的灌浆速率显著提升。吐丝后63 d,ABA处理的ZD958、JNK728和DK517籽粒干物质积累量分别为33.4、38.7和33.6 g/100粒,较CK处理分别显著提高了2.4%、7.7%和3.1%。生理脱水快的品种JNK728提升幅度较大。灌浆后期施用ABA后各玉米品种籽粒干物质积累量同CK处理相比无显著差异。

图3

图3   大田试验不同生育期施用ABA对不同玉米品种籽粒干物质积累量的影响

Fig.3   Effects of ABA application at different growth stages on grain dry matter accumulation of different maize varieties in field experiment


图4所示,盆栽试验与大田试验表现一致,均为灌浆中期施用ABA后各品种籽粒干物质积累量较CK处理有所升高。但是2种不同类型的玉米品种对ABA的敏感程度存在差异,生理脱水快的品种更加敏感。从吐丝后20 d至收获期,ZD958的CK和ABA处理的平均灌浆速率分别为0.47和0.50 g/d∙100粒,JNK728的平均灌浆速率分别为0.57和0.62 g/d∙100粒。施用ABA后,ZD958和JNK728的灌浆速率显著提升。在吐丝后56 d,ABA处理的ZD958和JNK728籽粒干物质积累量分别为31.4和39.0 g/100粒,较CK处理分别显著提升了4.5%和5.5%,生理脱水快的品种JNK728提升幅度较大。灌浆后期,ABA处理的各玉米品种籽粒干物质积累量同CK处理相比无显著差异。

图4

图4   盆栽试验不同生育期施用ABA对不同玉米品种籽粒干物质积累量的影响

Fig.4   Effects of ABA application at different growth stages on grain dry matter accumulation of different maize varieties in pot experiment


2.4 ABA对不同玉米品种籽粒脱水的影响

图5所示,各品种玉米从吐丝后20 d开始,随着天数增加,灌浆中期籽粒含水量均呈快速下降至逐渐减慢的趋势。在大田试验中,总体来说,灌浆中期各品种ABA处理的籽粒含水量较CK处理均有所降低。其中,ZD958和DK517均在施用后28 d开始籽粒含水量显著降低,而JNK728在施用后14 d开始籽粒含水量显著低于CK处理。施用ABA对不同脱水类型玉米品种籽粒含水量的影响不同,生理脱水快的品种更加敏感。吐丝后63 d,ABA处理的JNK728和DK517籽粒含水量分别为25.5%和27.2%,较CK处理分别显著降低了6.5%和8.1%。灌浆后期,ABA处理的各玉米品种籽粒含水量同CK处理相比无显著差异。

图5

图5   大田试验不同生育期施用ABA对不同玉米品种籽粒含水量的影响

Fig.5   Effects of ABA application at different growth stages on grain moisture content of different maize varieties in field experiment


图6所示,盆栽试验与大田试验表现一致,均为灌浆中期施用ABA后各品种籽粒含水量较CK处理有所降低,并在最终收获前ABA处理后玉米籽粒的含水量显著低于CK处理。但是2种不同类型的玉米品种对ABA的敏感程度存在差异,生理脱水快的品种更加敏感。在吐丝后56 d,ABA处理的ZD958和JNK728籽粒含水量分别为35.0%和27.6%,较CK处理分别显著降低了6.0%和8.2%。灌浆后期施用ABA,ABA处理后2玉米品种含水量相较于CK处理没有显著差异。

图6

图6   盆栽试验不同生育期施用ABA对不同玉米品种籽粒含水量的影响

Fig.6   Effects of ABA application at different growth stages on grain moisture content of different maize varieties in pot experiment


2.5 籽粒灌浆和脱水的相关性

吐丝后20 d,玉米籽粒灌浆速率和籽粒脱水速率的相关性分析如图7所示,玉米籽粒的脱水速率随着灌浆速率增加而增加。两者进一步的相关性分析表明,脱水速率和灌浆速率呈极显著正相关,相关系数为0.838。

图7

图7   籽粒脱水速率和灌浆速率的相关性分析

Fig.7   Correlation analysis of grain dehydration rate and filling rate


3 讨论

3.1 ABA调控玉米籽粒脱水的关键生育期

ABA在不同灌浆时期对玉米产量、籽粒灌浆及脱水影响不同。以往在水稻[20]和小麦[21]的研究中表明,ABA含量与籽粒增重在灌浆前期有相同趋势。但在灌浆后期,ABA含量影响籽粒灌浆以及物质生产。万泽花等[17]研究发现,早熟品种DH518和HZ8籽粒ABA含量从吐丝后20 d总体上高于ZD958和DH605,这与早熟品种和晚熟品种脱水速率出现最大差异的时间大体一致,说明灌浆中期籽粒ABA的积累可能与调控籽粒开始脱水密切相关。本研究中,大田和盆栽试验均表明,灌浆中期为ABA调控玉米籽粒脱水的关键生育期,在灌浆中期施用ABA后,籽粒灌浆速率、脱水速率和产量均显著提高。而灌浆后期施用ABA后,则无显著差异。这可能是因为灌浆中期是吐丝后20 d,即刚进入快速灌浆期,此时灌浆速度较快,粒重增量较大,是玉米籽粒生长发育的关键阶段,物质生产和籽粒脱水易受ABA调控。

3.2 ABA对玉米产量和籽粒灌浆特性的影响

籽粒灌浆和作物的生长发育过程主要受内源激素的调控,其中ABA在籽粒灌浆速率和持续时间上起到重要作用[10-11]。徐云姬等[22]发现玉米强势粒ABA含量高于弱势粒,籽粒ABA含量与灌浆速率呈显著正相关。在本研究中,灌浆中期施用ABA后,各玉米品种的灌浆速率均显著高于其清水对照,并提高了收获时的玉米千粒重,从而提高了玉米产量,这与前人[23]研究结果一致。对于ABA能够提高玉米产量的原因可能有以下几个方面:第一,ABA通过调节ATP酶的活性,减少H+穿过膜的运移动力,增加了H+/蔗糖的共运输,从而促进了同化物向籽粒库的运输;第二,ABA通过促进弱势粒胚乳细胞的分裂,增大库容和提高库的贮藏能力;第三,ABA能够促进糖―淀粉转化酶的活性,提高籽粒灌浆速率,从而提高产量[24-27]。从分子层面来看,ABA能够调控多个与淀粉合成相关的基因,调控淀粉代谢途径,进而影响产量[28]。但是,不同品种对ABA的敏感程度不同,灌浆中期施用ABA对JNK728的千粒重和产量提升最大,其次为DK517和ZD958,表明生理脱水快的玉米品种受ABA影响更大。

3.3 玉米籽粒脱水与灌浆的关系及ABA的调控效应

在玉米籽粒的生长发育过程中,籽粒脱水和灌浆同步进行,具有密切的关系[29]。在本研究中,通过对吐丝后20 d籽粒脱水速率和灌浆速率进行相关性分析发现,两者呈现极显著正相关关系,相关性系数为0.838,和以往的研究[29]结果一致。这主要是因为玉米籽粒灌浆的过程本质就是水分不断被干物质替换的过程,随着籽粒灌浆进程的推进,淀粉、蛋白质、油脂等合成产物不断充实籽粒,水分则不断被消耗和替代,籽粒含水率呈现不断下降的趋势,籽粒灌浆与脱水是同步进行、相互影响和制约的[30]

ABA与玉米籽粒脱水密切相关。2种脱水类型的玉米品种的脱水速率与ABA含量呈显著正相关,早熟脱水快品种的ABA含量高于晚熟脱水慢品种,尤其是在灌浆后期[17]。本研究发现在灌浆中期喷施ABA后,各玉米品种籽粒脱水速率显著提升,且收获时籽粒含水量显著降低。这和以往研究部分一致,即ABA对籽粒脱水具有调控作用,但是不同的是,李川等[16]的研究表明,喷施外源ABA抑制了籽粒灌浆进程,提高了籽粒含水率,尤其是对脱水快类型玉米品种。这可能和喷施的时期以及喷施浓度有关。从品种来看,不同品种籽粒脱水速率受ABA处理的影响效果存在差异,从大到小依次为JNK728、DK517和ZD958,生理脱水快的玉米品种籽粒脱水速率对ABA更加敏感,这与前人[14]研究结果相似,脱水快的品种有更多参与ABA调控籽粒脱水的基因发生响应。

尽管本研究表明,在灌浆中期施用适宜浓度的ABA能够降低籽粒含水量,提高产量,但是由于ABA易于光解且价格较高,在一定程度上限制其在农业生产中的推广。为了改变这一现状,研究者们做了大量的研究[31],目前开发了更稳定的ABA功能类似物。未来的研究可以考虑开发更稳定的ABA衍生物,以进一步提高其在农业中的应用效果。

4 结论

ABA调控玉米籽粒脱水和灌浆的关键生育期为灌浆中期;灌浆中期施用ABA后,虽然各玉米品种生育期缩短了2~4 d,但郑单958和生理脱水快品种(京农科728和迪卡517)产量分别平均提高5.4%和8.2%,产量提高主要是因为增加了籽粒的千粒重;灌浆中期施用ABA提高了玉米的灌浆速率和脱水速率,脱水快的品种效果比较显著;ABA处理下的生理脱水快的玉米品种在收获时籽粒干物质积累量平均提高了5.4%,籽粒含水量平均降低了7.6%。

参考文献

李少昆.

我国玉米机械粒收质量影响因素及粒收技术的发展方向

石河子大学学报(自然科学版), 2017, 35(3):265-272.

[本文引用: 1]

农业农村部. 农业农村部办公厅关于认定2023年农业国际贸易高质量发展基地的通知. (2023-10-18)[2024-05-06]. http://www.moa.gov.cn/nybgb/2023/202309/202310/t20231018_6438502.htm.

URL     [本文引用: 1]

Godfray H C J, Beddington J R, Crute I R, et al.

Food security: The challenge of feeding 9 billion people

Science, 2010, 327(5967):812-818.

DOI:10.1126/science.1185383      PMID:20110467      [本文引用: 1]

Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

Springmann M, Clark M, Mason-D’Croz D, et al.

Options for keeping the food system within environmental limits

Nature, 2018, 562:519-542.

Coomes O T, Barham B L, MacDonald G K, et al.

Leveraging total factor productivity growth for sustainable and resilient farming

Nature Sustainability, 2019, 2:22-28.

[本文引用: 1]

Wang X Y, Tan W M, Zhou S L, et al. Converting maize production with low emergy cost and high economic return for sustainable development. Renewable & Sustainable Energy Reviews, 2021, 136:110443.

[本文引用: 1]

Maiorano A, Fanchini D, Donatelli M. MIMYCS.

Moisture, a process-based model of moisture content in developing maize kernels

European Journal of Agronomy, 2014, 59:86-95.

刘青松, 贾艳丽, 肖宇, .

河北东部旱作区耐密宜机收春玉米品种筛选

作物研究, 2020, 34(1):21-26.

[本文引用: 1]

李少昆.

美国玉米生产技术特点与启示

玉米科学, 2013, 21(3):1-5.

[本文引用: 1]

Ghanem M E, Albacete A, Smigocki A C, et al.

Root-synthesized cytokinins improve shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants

Journal of Experimental Botany, 2011, 62:125-140.

[本文引用: 2]

Mohammad M H S, Etemadi N, Arab M M, et al.

Molecular and physiological responses of Iranian Perennial ryegrass as affected by Trinexapac ethyl, Paclobutrazol and Abscisic acid under drought stress

Plant Physiology and Biochemistry, 2017, 111:129-143.

DOI:S0981-9428(16)30445-4      PMID:27915174      [本文引用: 2]

Drought stress is the major limiting factor which affects turfgrass management in area with restricted rainfall or irrigation water supply. Trinexapac ethyl (TE), Paclobutrazol (PAC) and Abscisic acid (ABA) are three plant growth regulators (PGRs) that are commonly used on turf species for increasing their tolerance to different environmental stresses such as drought. However, little is known about the impact of PGRs on stress tolerance of Iranian Perennial ryegrass (Lolium perenne). The present study was conducted to examine the visual and physiological changes of Iranian Perennial ryegrass in response to foliar application of TE, PAC, and ABA under drought stress conditions. According to the obtained results, application of all three PGRs considerably restored visual quality of drought exposed plants. TE treatment increased chlorophyll content, proline content and resulted in less malondialdehyde (MDA) in drought stressed Perennial ryegrass. Application of all PGRs enhanced the relative water content (RWC) and decreased the electrolyte leakage (EL) and Hydrogen peroxide contents (HO content) of plants under drought stress, though the impact of TE was more pronounced. Throughout the experiment, TE- and ABA-treated plant showed greater soluble sugar (SSC) content as compared to the control. Antioxidant enzymes activities of drought exposed plants were considerably increased by PGRs application. Catalase (CAT) and Superoxide dismutase (SOD) activities were greater in TE-treated grasses followed by PAC-treated plants. Ascorbate peroxidase (APX) and peroxidase (POD) activities were significantly enhanced by TE and ABA application. The results of the present investigation suggest that application of TE, ABA and PAC enhances drought tolerance in Perennial ryegrass. TE, PAC and ABA were all effective in mitigating physiological damages resulting from drought stress, however the beneficial effects of TE were more pronounced. The result obtained of real time-PCR suggested that regulation of CAT, APX, POD and SOD genes expression at translational levels highly depended on the application of TE, PAC and ABA. Also, the results showed that deletion mutation in SOD and POD genes were not leading to enzyme inactivation.Copyright © 2016 Elsevier Masson SAS. All rights reserved.

Yang J C, Zhang J H.

Grain filling of cereals under soil drying

New Phytologist, 2006, 169(2):223-236.

DOI:10.1111/j.1469-8137.2005.01597.x      PMID:16411926      [本文引用: 1]

Monocarpic plants require the initiation of whole-plant senescence to remobilize and transfer assimilates pre-stored in vegetative tissues to grains. Delayed whole-plant senescence caused by either heavy use of nitrogen fertilizer or adoption of lodging-resistant cultivars/hybrids that remain green when the grains are due to ripen results in a low harvest index with much nonstructural carbohydrate (NSC) left in the straw. Usually, water stress during the grain-filling period induces early senescence, reduces photosynthesis, and shortens the grain-filling period; however, it increases the remobilization of NSC from the vegetative tissues to the grain. If mild soil drying is properly controlled during the later grain-filling period in rice (Oryza sativa) and wheat (Triticum aestivum), it can enhance whole-plant senescence, lead to faster and better remobilization of carbon from vegetative tissues to grains, and accelerate the grain-filling rate. In cases where plant senescence is unfavorably delayed, such as by heavy use of nitrogen and the introduction of hybrids with strong heterosis, the gain from the enhanced remobilization and accelerated grain-filling rate can outweigh the loss of reduced photosynthesis and the shortened grain-filling period, leading to an increased grain yield, better harvest index and higher water-use efficiency.

Zhang Z, Huang J, Gao Y M, et al.

Suppressed ABA signal transduction promotes sucrose utility in stem and reduces grain number in wheat under water stress

Journal of Experimental Botany, 2020, 71(22):7241-7256.

DOI:10.1093/jxb/eraa380      PMID:32822501      [本文引用: 1]

Water stress is a primary trigger for reducing grain number per spike in wheat during the reproductive period. However, under stress conditions, the responses of plant organs and the interactions between them at the molecular and physiological levels remain unclear. In this study, when water stress occurred at the young microspore stage, RNA-seq data indicated that the spike had 970 differentially expressed genes, while the stem, comprising the two internodes below the spike (TIS), had 382. Abscisic acid (ABA) signal transduction genes were down-regulated by water stress in both these tissues, although to a greater extent in the TIS than in the spike. A reduction in sucrose was observed, and was accompanied by increases in cell wall invertase (CWIN) and sucrose:sucrose 1-fructosyl-transferase (1-SST) activities. Hexose and fructan were increased in the TIS but decreased in the spike. ABA was increased in the spike and TIS, and showed significant positive correlation with CWIN and 1-SST activities in the TIS. Overall, our results suggest that water stress induces the conversion of sucrose to hexose by CWIN, and to fructan by 1-SST, due to increased down-regulation of ABA signal transduction related-genes in the TIS; this leads to deficient sucrose supply to the spike and a decrease in grain number.© The Author(s) 2020. Published by Oxford University Press on behalf of the Society for Experimental Biology.

陈银科, 滕振宁, 郑芹, .

脱落酸调控水稻籽粒灌浆的机理研究进展

分子植物育种,(2022-01-16)[2024-05-06]. http://kns.cnki.net/kcms/detail/46.1068.S.20220215.1824.006.html.

URL     [本文引用: 2]

乔江方, 李川, 刘京宝, .

不同自然脱水类型玉米品种子粒含水率变化与灌浆动态的关系

玉米科学, 2015, 23(5):96-101.

[本文引用: 1]

李川, 黄璐, 张美薇, .

转录组解析外源 ABA 对玉米脱水速率的影响

华北农学报, 2020, 35(4):15-26.

DOI:10.7668/hbnxb.20190948      [本文引用: 2]

为了探明迪卡517、郑单1002喷施外源ABA后脱水速率变化的分子机制,发掘影响脱水速率的关键差异表达基因及代谢通路,利用Illumina HiSeq<sup>TM</sup>2500测序仪分别对喷施ABA前后迪卡517(脱水速率较快)和郑单1002(脱水速率较慢)的穗位叶进行高通量转录组测序。原始序列经过质量控制、基因组比对、测序饱和度、基因覆盖度及冗余序列分析后进行基因功能注释。结果显示,迪卡517外源ABA处理与正常生长条件对比组检测到1 732个差异表达基因,其中1 251个为上调表达基因,481个为下调表达基因;郑单1002外源ABA处理与正常生长条件对比组检测到52个差异表达基因,其中24个为上调表达基因;迪卡517外源ABA处理与郑单1002外源ABA处理对比组检测到3 867个差异表达基因,其中1 946个为上调表达基因。不同对比组中筛选到差异表达基因GO分类情况、COG基因产物分类、KEGG代谢通路分析不同。转录因子分析共获得多个重要的转录因子家族,主要有AGC蛋白激酶家族、AP2/ERF转录因子家族、ARID转录因子、AUX/IAA转录因子家族、Alfin-like转录因子、Aur转录因子家族、B3转录因子家族、BBR-BPC转录因子家族、BES1转录因子、BUB转录因子、C2C2-CO-like转录因子等。Zm00001d035000、Zm00001d042063、Zm00001d045314等共同差异表达基因均在迪卡517和郑单1002中表达。对所有检测到的差异表达基因GO分类分析获得73个差异表达基因与水分代谢相关,推测这些基因作为外源ABA调控的下游基因起作用。

万泽花, 任佰朝, 赵斌, .

不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应

作物学报, 2019, 40(10):1517-1526.

[本文引用: 3]

Capelle V, Remoué C, Moreau L, et al.

QTLs and candidate genes for desiccation and abscisic acid content in maize kernels

BMC Plant Biology, 2010, 10(1):1-22.

[本文引用: 1]

Zhang H, Gou X N, Ma L C, et al.

Reveal the kernel dehydration mechanisms in maize based on proteomic and metabolomic analysis

BMC Plant Biology, 2024, 24(1):15.

DOI:10.1186/s12870-023-04692-z      PMID:38163910      [本文引用: 1]

Kernel dehydration is an important factor for the mechanized harvest in maize. Kernel moisture content (KMC) and kernel dehydration rate (KDR) are important indicators for kernel dehydration. Although quantitative trait loci and genes related to KMC have been identified, where most of them only focus on the KMC at harvest, these are still far from sufficient to explain all genetic variations, and the relevant regulatory mechanisms are still unclear. In this study, we tried to reveal the key proteins and metabolites related to kernel dehydration in proteome and metabolome levels. Moreover, we preliminarily explored the relevant metabolic pathways that affect kernel dehydration combined proteome and metabolome. These results could accelerate the development of further mechanized maize technologies.In this study, three maize inbred lines (KB182, KB207, and KB020) with different KMC and KDR were subjected to proteomic analysis 35, 42, and 49 days after pollination (DAP). In total, 8,358 proteins were quantified, and 2,779 of them were differentially expressed proteins in different inbred lines or at different stages. By comparative analysis, K-means cluster, and weighted gene co-expression network analysis based on the proteome data, some important proteins were identified, which are involved in carbohydrate metabolism, stress and defense response, lipid metabolism, and seed development. Through metabolomics analysis of KB182 and KB020 kernels at 42 DAP, 18 significantly different metabolites, including glucose, fructose, proline, and glycerol, were identified.In sum, we inferred that kernel dehydration could be regulated through carbohydrate metabolism, antioxidant systems, and late embryogenesis abundant protein and heat shock protein expression, all of which were considered as important regulatory factors during kernel dehydration process. These results shed light on kernel dehydration and provide new insights into developing cultivars with low moisture content.© 2023. The Author(s).

Yang J C, Zhang J H, Wang Z Q, et al.

Post-anthesis development of inferior and superior spikelets in rice in relation to abscisic acid and ethylene

Journal of Experimental Botany, 2006, 57:149-160.

PMID:16330527      [本文引用: 1]

The purpose of this study was to test the hypothesis that the interaction between abscisic acid (ABA) and ethylene may be involved in mediating the post-anthesis development of spikelets in rice (Oryza sativa L.). Two rice genotypes were field-grown, and the changes of ABA, ethylene, and 1-aminocylopropane-1-carboxylic acid (ACC) levels in spikelets during grain filling and their relationships with endosperm-division and grain-filling rates were investigated. The results showed that earlier-flowering superior spikelets exerted dominance over later-flowering inferior spikelets in endosperm cell-division and grain-filling rates. The two genotypes behaved the same. Later-flowering spikelets had higher levels of ethylene and ACC than earlier-flowering spikelets. The ethylene evolution rate was significantly and negatively correlated with the cell division and grain filling rates. By contrast to ethylene, later-flowering spikelets contained a lower ABA content/concentration and showed a low content ratio of ABA to ACC than earlier-flowering ones. The cell-division and grain-filling rates were significantly and positively correlated with both ABA contents and the ratio of ABA to ACC. Application of cobalt ion (inhibitor of ethylene synthesis) or ABA at an early grain-filling stage significantly increased endosperm cell division rate and cell number, grain-filling rate, and grain weight of inferior spikelets. Application of ethephon (an ethylene-releasing agent) or fluridone (an inhibitor of carotenoid synthesis) had the opposite effect. The results suggest that antagonistic interactions between ABA and ethylene mediate endosperm cell-division and grain-filling in rice. A higher ratio of ABA to ethylene in rice spikelets is required to maintain a faster grain-filling rate.

Yang J C, Zhang J H, Liu K, et al.

Abscisic acid and ethylene interact in wheat grains in response to soil drying during grain filling

New Phytologist, 2006, 271:293-303.

[本文引用: 1]

徐云姬, 顾道健, 杨建昌, .

玉米果穗不同部位籽粒激素含量及其与胚乳发育和籽粒灌浆的关系

作物学报, 2013, 39(8):1452-1461.

[本文引用: 1]

Zhang L, Liang X G, Shen S, et al.

Increasing the abscisic acid level in maize grains induces precocious maturation by accelerating grain filling and dehydration

Plant Growth Regulation, 2018, 86:65-79.

[本文引用: 1]

杨建昌, 王国忠, 王志琴, .

早种水稻灌浆特性与灌浆期籽粒中激素含量的变化

作物学报, 2002, 28(5):615-621.

[本文引用: 1]

Fu J, Xu Y J, Chen L, et al.

Post-anthesis changes in activities of enzymes related to starch synthesis andcontents of hormones in superior and inferior spikelets and their relation with grain filling of super rice

Chinese Journal of Rice Science, 2012, 26(3):302-310.

Rohit K, Shalini M, Belay T A.

Molecular aspects of sucrose transport and its metabolism to starch duringseed development in wheat:a comprehensive review

Biotechnology Advances, 2018, 36(4):954-967.

DOI:S0734-9750(18)30036-3      PMID:29499342     

Wheat is one of the most important crops globally, and its grain is mainly used for human food, accounting for 20% of the total dietary calories. It is also used as animal feed and as a raw material for a variety of non-food and non-feed industrial products such as a feedstock for the production of bioethanol. Starch is the major constituent of a wheat grain, as a result, it is considered as a critical determinant of wheat yield and quality. The amount and composition of starch deposited in wheat grains is controlled primarily by sucrose transport from source tissues to the grain and its conversion to starch. Therefore, elucidation of the molecular mechanisms regulating these physiological processes provides important opportunities to improve wheat starch yield and quality through biotechnological approaches. This review comprehensively discusses the current understanding of the molecular aspects of sucrose transport and sucrose-to-starch metabolism in wheat grains. It also highlights the advances and prospects of starch biotechnology in wheat.Copyright © 2018 Elsevier Inc. All rights reserved.

Zhao H, Li Z, Amjad H, et al.

Proteomic analysis reveals a role of ADP-glucose pyrophosphorylase in theasynchronous filling of rice superior and inferior spikelets

Protein Expression and Purification, 2021, 183(7):1-10.

[本文引用: 1]

Qu J Z, Zhong Y Y, Ding L, et al.

Biosynthesis,structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate

Food Chemistry, 2022, 368:130796.

[本文引用: 1]

李德新. 玉米籽粒灌浆、脱水速率品种差异和相关分析. 北京: 中国农业科学院, 2009.

[本文引用: 2]

李璐璐, 明博, 高尚, .

夏玉米籽粒脱水特性及与灌浆特性的关系

中国农业科学, 2018, 51(10):1878-1889.

DOI:10.3864/j.issn.0578-1752.2018.10.007      [本文引用: 1]

目的 当前,玉米收获期籽粒含水率普遍偏高,限制了中国机械粒收技术的推广应用。玉米籽粒授粉后,灌浆与脱水过程相伴,但二者之间的关系并不明确,本研究通过对不同玉米品种籽粒脱水和灌浆过程的系统观测,明确其籽粒脱水和灌浆特征,探讨二者间的关系,为适宜机械粒收品种的选育和推广提供支持。方法 试验于2015—2016年在河南新乡进行,累计选用22个供试玉米品种,统一授粉。2015年自授粉后26 d开始至11月14日止、2016年自授粉后11 d开始至10月17日止,连续测定籽粒含水率(MC)、含水量(M)、干重(DW)与鲜重(FW)的动态变化,建立这些指标与授粉后积温(T)之间的回归方程,以此明确籽粒脱水和灌浆特征,并结合籽粒脱水、灌浆参数的相关分析结果,探讨这两个过程的关系。结果 玉米籽粒含水率、含水量、干重及鲜重的动态变化与授粉后积温均有极显著的非线性关系。22个参试玉米品种籽粒含水率与授粉后积温的关系符合Logistic Power模型。授粉后,参试品种含水率降至28%需要积温1 126—1 646℃·d,平均1 357℃·d;含水率降至25%需要积温1 218—1 810℃·d,平均1 480℃·d。综合分析籽粒干物质和含水量的变化动态,籽粒含水率变化可分为两个阶段。第一个阶段从籽粒建成至线性灌浆期结束为止,干物质的快速积累是含水率快速下降的主导因素;第二阶段自线性灌浆期结束至籽粒收获,含水率下降的主导因素转化为籽粒水分的持续散失。相关分析显示,玉米灌浆期天数、积温与生理成熟期籽粒含水率在2015年达到极显著负相关,2016年相关性不显著;不同品种生理成熟前、后及总脱水速率与灌浆速率之间相关性不显著。结论 籽粒含水率与授粉后积温建立的Logistic Power回归模型具有良好的预测稳定性。籽粒含水率的变化由籽粒灌浆和籽粒脱水两个关键因素分阶段主导,评价适宜机械粒收的品种,不仅要注意籽粒灌浆特性和熟期,还要关注籽粒脱水特性的选择。

Cao M J, Liu X, Zhang Y, et al.

An ABA-mimicking ligand that reduces water loss and promotes drought resistance in plants

Cell Research, 2013, 23(8):1043-1054.

DOI:10.1038/cr.2013.95      PMID:23835477      [本文引用: 1]

Abscisic acid (ABA) is the most important hormone for plants to resist drought and other abiotic stresses. ABA binds directly to the PYR/PYL family of ABA receptors, resulting in inhibition of type 2C phosphatases (PP2C) and activation of downstream ABA signaling. It is envisioned that intervention of ABA signaling by small molecules could help plants to overcome abiotic stresses such as drought, cold and soil salinity. However, chemical instability and rapid catabolism by plant enzymes limit the practical application of ABA itself. Here we report the identification of a small molecule ABA mimic (AM1) that acts as a potent activator of multiple members of the family of ABA receptors. In Arabidopsis, AM1 activates a gene network that is highly similar to that induced by ABA. Treatments with AM1 inhibit seed germination, prevent leaf water loss, and promote drought resistance. We solved the crystal structure of AM1 in complex with the PYL2 ABA receptor and the HAB1 PP2C, which revealed that AM1 mediates a gate-latch-lock interacting network, a structural feature that is conserved in the ABA-bound receptor/PP2C complex. Together, these results demonstrate that a single small molecule ABA mimic can activate multiple ABA receptors and protect plants from water loss and drought stress. Moreover, the AM1 complex crystal structure provides a structural basis for designing the next generation of ABA-mimicking small molecules.

/