作物杂志,2017, 第3期: 6–13 doi: 10.16035/j.issn.1001-7283.2017.03.002

• 专题综述 • 上一篇    下一篇

高油酸花生遗传育种研究进展

李拴柱1,宋江春1,王建玉1,张秀阁1,乔建礼1,刘宁2   

  1. 1 南阳市农业科学院,473000,河南南阳
    2 南阳市卧龙区种子技术服务站,473000,河南南阳
  • 收稿日期:2017-03-17 修回日期:2017-05-02 出版日期:2017-06-15 发布日期:2018-08-26
  • 通讯作者: 宋江春
  • 作者简介:李拴柱,研究实习员,主要从事花生育种和栽培技术研究
  • 基金资助:
    河南省现代农业产业技术体系专项资金(Z2012-05-01)

Advances in Genetics and Breeding of High Oleic Acid Peanut

Li Shuanzhu1,Song Jiangchun1,Wang Jianyu1,Zhang Xiuge1,Qiao Jianli1,Liu Ning2   

  1. 1 Nanyang Academy of Agricultural Sciences,Nanyang 473000,Henan,China
    2 The Seed Technical Service Stations of Wolong District,Nanyang 473000,Henan,China
  • Received:2017-03-17 Revised:2017-05-02 Online:2017-06-15 Published:2018-08-26
  • Contact: Jiangchun Song

摘要:

随着花生食品产业的发展,高油酸花生越来越受到人们的关注,市场需求逐渐扩大,培育高产、多抗、优质的高油酸花生新品种成为花生育种工作者的重要目标。综述近年来国内外花生高油酸遗传育种的研究进展和成果,并分析讨论当前育种工作中存在的问题及今后的发展方向,以期为我国的高油酸花生育种提供参考。

关键词: 花生, 高油酸, 遗传育种

Abstract:

With the development of peanut industry, people pay more and more attention to high oleic peanut. It becomes one of the major goals for breeders to develop new high-oleic peanut variety with good quality, high and steady yield. In this review we recapitulates the development of high oleic peanut. First, we summarized advances in high-oleic peanut breeding and listed some cultivars released in recent years. Secondly, we discussed the problems and development orientation of high-oleic peanut breeding. And finally we provided some references for the coming breeding work.

Key words: Peanut, High oleic, Genetic breeding

表1

花生高油酸育种中常用的分子标记"

类型
Types
引物Primers 分子标记Markers 文献
References
CAPS Marker
af19-F:GATTACTGATTATTGACTT
1056-R:CCAACCCAAACCTTTCAGAG
Hpy991:ol1型不能被酶切,Ol1型被切成598bp和228bp
[30]
1344-F:GGAGCTTTAACAACACAA
1345-R:ATATGGGAGCATAAGGGT
Hpy188I:ol2型被切成521bp和137bp,Ol2型不能被酶切
[6]
bf19-F:CAGAACCATTAGCTTTG
FAD-R:CTCTGACTATGCATCAG
Hpy188I: ol2型被切成6段;Ol2型被切成5段
[6]
AS-PCR
bf19-F:CAGAACCATTAGCTTTG
FAD-R:CTCTGACTATGCATCAG
ahFAD2B基因665_666insMITE突变型扩增片断1434bp,野生型扩增片断1220bp [4]
F435-F:ATCCAAGGCTGCATTCTCAC [37]
F435IC-R:CTCCCTGGTGGATTGTTCATGT 参考片断250bp(检测PCR是否成功)
F435WT-R:ACTTCGTCGCGGTCG 扩增193bp条带,Ol1Ol1Ol2Ol2无此条带
F435SUB-R:TGGGACAAACACTTCGTT 扩增203bp条带,ol1ol1型有此条带
F435INS-R:AACACTTCGTCGCGGTCT 扩增195bp条带,ol2ol2突变有此条带
FAD2A-F:GATTACTGATTATTGACTTGCTTTG
FAD2A-G:GTTTTGGGACAAACACTTCTTC(反应1)
FAD2A-A:GTTTTGGGACAAACACTTCTTT(反应2)
Ol1Ol1和ol1ol1型分别在反应1和反应2有557bp条带, Ol1ol1型在反应1和反应2中都有557bp条带
[27]

FAD2B-F:CAGAACCATTAGCTTTGTAGTAGTG
FAD2B-C:AACACTTCGTCGCGGTTG(反应3)
FAD2B-A:AACACTTCGTCGCGGTTT(反应4)
Ol2Ol2和ol2ol2型分别在反应3和反应4有536bp条带,
Ol2ol2型在反应3和反应4中都有536bp条带
FAD2-R:CTCTGACTATGCATCAGAACTTGT 参考片断1.2kb(检测PCR是否成功)
RT-PCR
FAD2B-F:GCCGCCACCACTCCAAC
FAD2B-R:TGGTTICGGGACAAACACTIC
探针6FAMACAGGTTCCCTCAGACMGBNFQ检测ol2型;
探针VICACAGGTTCCCTCGACMGBNFQ检测Ol2型
[38]
FAD2A-F:GCCGCCACCACTCCAACAC
FAD2A-R:GTTATACCATGATACCTTTGATTTTGGTTTTG
探针6FAMCCTCGACCGCAACG MGBNFQ检测ol1型;
探针VICCCTCGACCGCGACGMGBNFQ检测Ol1型
[39]

表2

美国育成高油酸花生品种"

品种
Varieties
类型
Types
油酸含量或油酸/亚油酸
Oil content or O/L
PVP号
PVP No.
品种
Varieties
类型
Types
油酸含量或油酸/亚油酸
Oil content or O/L
PVP号
PVP No.
SunOleic 95R Runner 80 9400148 York Runner 80 200800186
458[4] Runner - 9600242 Florida Fancy[43] Virginia - 200800231
AT225 High Oleic Runner 80 9700010 McCloud[43] Runner - 200800232
SunOleic 97R Runner 80 9700182 Tamnut OL06 Spanish 20.8:1 200800279
GK-7 High Oleic[41] Runner - 9800019 Tamrun OL07[44] Runner - 200800280
AgraTech 1-1[41] Runner - 200000134 Georgia-08V Virginia 83.79 200900238
AgraTech 201[41] Runner - 200000135 Georgia-09B[45] Runner - 201000075
AgraTech VC2[41] Runner - 200000136 107[45] Runner - 201100459
Georgia Hi-O/L Virginia 40:1 200000255 Georgia-11J[46] Virginia - 201200100
Olin Spanish 22.3:1 200200149 Red River Runner Runner 24.5:1 201200244
Tamrun OL01 Runner 13:1 200200150 Tamrun OL11[47] Runner - 201300196
Georgia 02C Runner 32:1 200300050 727[45] Runner - 201300199
Tamrun OL02 Runner 24.1:1 200300170 511[45] Runner - 201400249
Andru II Runner 80 200300179 Georgia-13M[45] Runner - 201400324
ANorden Runner 80 200300205 NuMex 01[48] Valencia 23:1 -
Hull Runner 80 200300207 297[45] Runner - 201500201
GP-1 Runner 80 200300321 Sullivan[49] - - 201500287
Georgia-04S Spanish 34:1 200500121 Wynne[49] - - 201500288
Georgia-05E Virginia 35:1 200600059 OLé Spanish 20:1 201500377
Brantley Virginia 27.8:1 200600071 VENUS Virginia 26:1 201500363
Tamrun OL12[42] Runner - - Webb[50] Runner - 201500394
AT-3085RO[43] Runner - 200700154 157[44] Runner - 201600140
AT-215[43] Runner - 200700261 Lariat Runner 21:1 201600156
Florida 07 Runner 80 200800069

表3

我国育成高油酸花生品种"

品种Varieties 油酸含量(%)
Oleic acid
content
审(鉴)定 登记证号
Trial ( Appraisal )
registration No.
品种Varieties 油酸含量(%)
Oleic acid
content
审(鉴)定 登记证号
Trial ( Appraisal )
registration No.
狮油红4号Shiyouhong 4 75.13 1991年广东审定 花育661 Huayu 661 81.20 皖品鉴登字第1405002
开农H03-3 Kainong H03-3 81.60 皖品鉴登字第0605006 花育663 Huayu 663 80.60 皖品鉴登字第1405003
花育32 Huayu 32 77.80 鲁农审2009040号 花育962 Huayu 962 82.30 皖品鉴登字第1405019
开农61 Kainong 61 76.01 豫审花2012001 花育963 Huayu 963 80.10 皖品鉴登字第1505029
开农176 Kainong 176 76.80 国品鉴花生2013001 花育964 Huayu 964 81.70 皖品鉴登字第1505030
花育662 Huayu 662 82.11 皖品鉴登字第1305001 花育965 Huayu 965 81.50 皖品鉴登字第1505031
花育51 Huayu51 80.31 皖品鉴登字第1305005 花育966 Huayu 966 82.00 皖品鉴登字第1505032
花育52 Huayu 52 81.45 皖品鉴登字第1305006 冀花16 Jihua 16 79.25 国品鉴花生2015006
花育951 Huayu 951 80.47 皖品鉴登字第1305007 开农71 Kainong 71 72.95 豫审花2015002
花育961 Huayu 961 81.20 皖品鉴登字第1305010 豫花37号Yuhua 37 78.00 豫审花2015011
冀花11 Jihua11 80.70 2013年河北鉴定 花育664 Huayu 664 81.90 皖品鉴登字第1505026
冀花13 Jihua 13 79.60 国品鉴花生2014005 花育666 Huayu 666 81.70 皖品鉴登字第1505027
开农1715 Kainong1715 75.60 豫审花2014002 花育667 Huayu 667 80.30 皖品鉴登字第1505028
开农58 Kainong 58 79.40 鄂审油2014006 冀花18号Jihua 18 81.80 冀审花2016015号
[1] 张雯丽, 李想, 李淞淋 . 中国花生供需现状及未来10年展望.农业展望, 2015(9):7-11.
doi: 10.3969/j.issn.1673-3908.2015.09.002
[2] 王传堂, 张建成 . 花生遗传改良.上海: 上海科学技术出版社, 2013.
[3] Norden A J, Gorbet D W, Knauft D A . Variability in oil quality among peanut genotypes in the florida breeding program. Peanut Science, 1987,14:7-11.
doi: 10.3146/i0095-3679-14-1-3
[4] Patel M, Jung S, Moore K , et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical and Applied Genetics, 2004,108(8):1492-1502.
doi: 10.1007/s00122-004-1590-3 pmid: 14968307
[5] Jung S, Swift D, Sengoku E , et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L.).I.Isolation and characterization of two genes encoding microsomal oleoyl-PC desaturases. Molecular & General Genetics:MGG, 2000,263(5):796-805.
[6] Chu Y, Holbrook C C, Ozias-Akins P . Two alleles of ahFAD2B control the high oleic acid trait in cultivated peanut. Crop Science, 2009,49:2029-2036.
doi: 10.2135/cropsci2009.01.0021
[7] Yu S L, Pan L J, Yang Q L , et al. Comparison of the 12 fatty acid desaturase gene between high oleic and normal oleic peanut genotypes. Journal of Genetics and Genomics, 2008,35:679-685.
doi: 10.1016/S1673-8527(08)60090-9
[8] Wang C T, Tang Y Y, Wang X Z , et al. Sodium azide mutagenesis resulted in a peanut plant with elevated oleate content.Electronic Journal of Biotechnology. 2011,14(2):1-7.
[9] Fang C Q, Wang C T, Wang P W , et al. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content. Journal of Oleo Science, 2012,61(3):143-148.
doi: 10.5650/jos.61.143
[10] Mondal S, Badigannavar A M . Induction of genetic variability for fatty acid composition in a large-seeded groundnut variety through induced mutagenesis. British Journal of Pharmacology, 2010,8:1-4.
[11] Mondal S, Badigannavar A M , D’Souza S F.Induced variability for fatty acid profile and molecular characterization of high oleate mutant in cultivated groundnut (Arachis hypogaea L.). Plant Breeding, 2011,130(2):242-247.
doi: 10.1111/pbr.2011.130.issue-2
[12] 徐霞 . 高油酸花生基因工程育种的研究. 济南:山东大学, 2006.
doi: 10.7666/d.y982663
[13] 张小茜, 单雷, 唐桂英 , 等. 农杆菌介导的花生Δ~(12)脂肪酸脱氢酶基因AhFAD2 RNAi抑制表达遗传转化研究. 中国油料作物学报, 2007,29(4):409-415.
doi: 10.3321/j.issn:1007-9084.2007.04.010
[14] Yin D M, Deng S Z, Zhan K H , et al. High oleic peanut oils produced by hpRNA mediated genes ilencing of oleate desaturase. Plant Molecular Biology Reporter, 2007,25:154-163.
doi: 10.1007/s11105-007-0017-0
[15] 李桂民 . 双链RNA基因沉默在高油酸花生育种中的应用. 长春:东北师范大学, 2005.
[16] 姜慧芳, 段乃雄 . 花生种质资源的综合评价. 中国油料作物学报, 1998,20(3):31-35.
[17] Wang M L, Tonnis B , An Y Q C,et al.Newly identified natural high-oleate mutant from Arachis hypogaea L.subsp.hypogaea. Molecular Breeding, 2015,35(9):1-9.
doi: 10.1007/s11032-015-0202-z
[18] Moore K M, Knauft D A . The inheritance of high oleic acid in peanut. Heredity, 1989,80:252-253
doi: 10.1002/j.2168-0159.2012.tb05694.x
[19] Knauft D A, Moore K M, Gorbet D W . Further studies on the inheritance of fatty acid composition in peanut. Peanut Science, 1993,20:74-76.
doi: 10.3146/i0095-3679-20-2-2
[20] 禹山林 ,Isleib T G. 美国大花生脂肪酸的遗传分析. 中国油料作物学报, 2000,22(1):34-37.
[21] 丁锦平, 韩柱强, 周瑞阳 , 等. 花生油酸亚油酸比值的遗传分析. 中国油料作物学报, 2007,29(3):233-237.
doi: 10.3321/j.issn:1007-9084.2007.03.002
[22] 黄冰艳, 张新友, 苗利娟 , 等. 花生油酸和亚油酸含量的遗传模式分析. 中国农业科学, 2012,45(4):617-624.
doi: 10.3864/j.issn.0578-1752.2012.04.002
[23] Singkham N, Jogloy S, Kesmala T , et al. Estimation of heritability by parent-offspring regression for high-oleic acid in peanut. Asian Journal of Plant Sciences, 2010,9(6):358-363.
doi: 10.3923/ajps.2010.358.363
[24] Barkley N A, Isleib T G, Wang M L , et al. Genotypic effect of ahFAD2,on fatty acid profiles in six segregating peanut (Arachis hypogaea L.) populations. BMC Genetics, 2013,14(1):1-13.
[25] Ray T K, Holly S P, Knauft D A , et al. The primary defect in developing seed from the high oleate variety of peanut (Arachis hypogaea L.) is the absence of Δ12-desaturase activity. Plant Science, 1993,91:15-21.
doi: 10.1016/0168-9452(93)90184-2
[26] Patel M, Jung S, Moore K , et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene. Theoretical & Applied Genetics, 2004,108(8):1492-1502.
doi: 10.1007/s00122-004-1590-3 pmid: 14968307
[27] Yu H T, Yang W Q, Tang Y Y , et al. An AS-PCR assay for accurate genotyping of FAD2A/FAD2B genes in peanuts (Arachis hypogaea L.). Grasas Y Aceites, 2013,64(4):395-399.
doi: 10.3989/gya.2013.v64.i4
[28] Jung S, Powell G, Moore K , et al. The high oleate trait in the cultivated peanut (Arachis hypogaea L).II.Molecular basis and genetics of the trait. Molecular & General Genetics Mgg, 2000,263(5):806-811.
[29] López Y, Nadaf H L, Smith O D , et al. Isolation and characterization of the Delta(12)-fatty acid desaturase in peanut (Arachis hypogaea L.) and search for polymorphisms for the high oleate trait in Spanish market-type lines. Theoretical & Applied Genetics, 2000,101(7):1131-1138.
[30] Chu Y, Ramos L, Holbrook C C , et al. Frequency of a loss-of-function mutation in Oleoyl-PC desaturase,in the Mini-Core of the U.S.peanut germplasm collection. Crop Science, 2007,47(6):2372-2378.
doi: 10.2135/cropsci2007.02.0117
[31] 雷永, 姜慧芳, 文奇根 , 等. ahFAD2A等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析. 作物学报, 2010,36(11):1864-1869.
doi: 10.3724/SP.J.1006.2010.01864
[32] Mukri G, Nadaf H L, Bhat R S , et al. Phenotypic and molecular dissection of ICRISAT mini core collection of peanut (Arachis hypogaea L.) for high oleic acid. Plant Breeding, 2012,131(3):418-422.
doi: 10.1111/pbr.2012.131.issue-3
[33] 高慧敏, 张颖君 . 花生种子脂肪酸含量的微量、快速测定. 中国农学通报, 2010,26(13):98-103.
[34] Yang C D, Guan S Y, Tang Y Y , et al. Rapid non-destructive determination of fatty acids in single groundnut seeds by gas chromatography. Journal of Peanut Science, 2012,41(3):21-26.
[35] Bannore Y C, Chenault K D, Melouk H A , et al. Capillary electrophoresis of some free fatty acids using partially aqueous electrolyte systems and indirect UV detection.Application to the analysis of oleic and linoleic acids in peanut breeding lines. Journal of Separation Science, 2008,31(14):2667-2676.
doi: 10.1002/jssc.v31:14
[36] Tillman B L, Gorbet D W, Person G . Predicting oleic and linoleic acid content of single peanut seeds using near-infrared reflectance spectroscopy. Crop Science, 2006,46(5):2121-2126.
doi: 10.2135/cropsci2006.01.0031
[37] Chen Z, Wang M L, Barkley N A , et al. A simple Allele-Specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for high-oleate trait selection. Plant Molecular Biology Reporter, 2010,28(3):542-548.
doi: 10.1007/s11105-010-0181-5
[38] Barkley N A , Chamberlin K D C.Wang M L,et al.Development of a real-time PCR genotyping assay to identify high oleic acid peanuts (Arachis hypogaea L.). Molecular Breeding, 2010,25:541-548.
doi: 10.1007/s11032-009-9338-z
[39] Barkley N A, Wang M L, Pittman R N . A real-time PCR genotyping assay to detect FAD2A SNPs in peanuts (Arachis hypogaea L.). Electronic Journal of Biotechnology, 2011,14(1):9-10.
doi: 10.2225/vol14-issue1-fulltext-12
[40] 陈静, 毛瑞喜, 胡晓辉 , 等. 利用RIL群体检测与花生高油酸含量连锁的SSR标记. 花生学报, 2016,45(1):1-7.
[41] Bostick J P, Wells L W, Gamble B E. The 2000 alabama performance comparison of peanut varieties. The 2000 alabama performance comparison of peanut varieties.
[42] Simpson C E, Baring M R, Schubert A M , et al. Registration of 'Tamrun OL12' peanut. Journal of Plant Registrations, 2006,8(2):117-121.
doi: 10.2135/cropsci2006.02-0125
[43] Bostick J P, Wells L W, Gamble B E. The 2009 alabama performance comparison of peanut varieties. The 2009 alabama performance comparison of peanut varieties.
[44] Baring M R, Simpson C E, Burow M D , et al. Registration of ‘Tamrun OL07’ peanut. Crop Science, 2006,46(6):449-456.
doi: 10.2135/cropsci2006.06.0413
[45] Bostick J P, Wells L W, Gamble B E . The 2016 alabama performance comparison. The 2016 alabama performance comparison.
[46] Branch W D . Registration of 'Georgia-11J' peanut. Journal of Plant Registrations, 2012,6(3):281-283.
doi: 10.3198/jpr2011.11.0604crc
[47] Baring M R, Simpson C E, Burow M D , et al. Registration of 'Tamrun OL11' peanut. Journal of Plant Registrations, 2013,7(2):154.
doi: 10.3198/jpr2012.06.0001crc
[48] Puppala N, Tallury S P . Registration of 'NuMex 01' high oleic valencia peanut. Journal of Plant Registrations, 2014,8(2):127.
doi: 10.3198/jpr2013.11.0070crc
[49] Roberson R. Growers should like two new high oleic peanut varieties.Southeast Farm Press Exclusive Insight, 2013.
[50] Simpson C E, Starr J L, Baring M R , et al. Registration of 'Webb' peanut. Journal of Plant Registrations, 2013,7(3):265.
doi: 10.3198/jpr2013.01.0005crc
[51] 廖小妹, 黎秀英, 李丽容 , 等. 低亚油酸特异花生品种狮油红4号.广东农业科学, 1992(6):20.
[52] 陈静 . 高油酸花生遗传育种研究进展. 植物遗传资源学报, 2011,12(2):190-196.
[53] 周建华 . 我国花生产业供求、价格与利益分配研究. 北京:中国农业科学院, 2012.
[1] 何中国,朱统国,李玉发,王佰众,牛海龙,刘红欣,李伟堂,牟书靓. 吉林省花生育种现状及发展方向[J]. 作物杂志, 2018, (4): 8–12
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102–105
[3] 宋江春,李拴柱,王建玉,张秀阁,朱雪峰,乔建礼,向臻. 我国高油花生育种研究进展[J]. 作物杂志, 2018, (3): 25–31
[4] 宁东贤,赵玉坤,闫翠萍,杨秀丽,肖俊红,杨丽萍. 山西省南部花生品种产量稳定性的模型分析及评价[J]. 作物杂志, 2017, (3): 39–43
[5] 郑柱荣,张瑞祥,杨婷婷,文利超,沈雪峰. 盐胁迫对花生幼苗根系生理生化特性的影响[J]. 作物杂志, 2016, (4): 142–145
[6] 刘义明,凌钊,韩玉芬,杨桂梅,温静涛. 施用硒微肥对红衣花生硒含量的影响[J]. 作物杂志, 2016, (2): 105–106
[7] 胡庆一, 肖刚, 张振乾, 等. 9个光合作用相关基因在高油酸油菜近等基因系不同生育期中的表达研究[J]. 作物杂志, 2015, (4): 11–15
[8] 吕鹏超, 梁斌, 隋方功, 等. 不同绿肥秸秆养分释放规律的研究[J]. 作物杂志, 2015, (4): 130–134
[9] 权宝全, 王国桐, 白冬梅, 等. 单粒精播密度对幼龄果园间作花生生长发育及产量的影响[J]. 作物杂志, 2015, (3): 83–86
[10] 曾细华, 程春明, 胡金和. 我国花生抗青枯病和黄曲霉病种质鉴定与利用研究进展[J]. 作物杂志, 2015, (3): 17–22
[11] 黄少辉, 李俊良, 金圣爱. 不同材质地膜对花生产量及土壤中增塑剂含量的影响[J]. 作物杂志, 2015, (3): 139–141
[12] 宋宸, 谢宏, 曹敏建, 等. 毗虫琳拌种对花生萌芽及生长的影响[J]. 作物杂志, 2015, (1): 160–162
[13] 焦念元, 李吉明, 汪江涛, 等. 氮磷对玉米花生间作蛋白质与氮代谢特点的影响[J]. 作物杂志, 2014, (6): 99–105
[14] 沈雪峰, 方越, 董朝霞, 等. 甘蔗/花生间作对土壤微生物和土壤酶活性的影响[J]. 作物杂志, 2014, (5): 55–58
[15] 张文英, 刘国庆, 王宝强, 等. 塞尔维亚玉米产业考察报告[J]. 作物杂志, 2014, (4): 145–147
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .