作物杂志,2025, 第5期: 93101 doi: 10.16035/j.issn.1001-7283.2025.05.013
盛彬1,2(
), 林志豪1, 武志健1,3, 赵一明1, 叶雪凌2, 吕红豪1, 刘广洋1(
), 徐东辉1(
)
Sheng Bin1,2(
), Lin Zhihao1, Wu Zhijian1,3, Zhao Yiming1, Ye Xueling2, Lü Honghao1, Liu Guangyang1(
), Xu Donghui1(
)
摘要:
近年来,在世界人口不断增长的背景下,农业纳米技术作为一个快速兴起的新研究领域已经成为提高作物生产力和养分利用效率的有力工具。农业中的纳米颗粒通常被用作纳米肥料,然而它们的持续应用还可能对园艺作物产生一定的负面影响。因此,本文概述了纳米技术对园艺作物的影响,系统阐述了纳米肥料在作物体内吸收与转运途径、影响园艺作物的主要效应及毒副作用,为纳米技术在园艺作物中应用提供理论指导。
| [1] | Mahapatra D M, Satapathy K C, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Science of the Total Environment, 2021, 803(10):149990. |
| [2] | 张金波, 白雪, 钟健, 等. 介孔二氧化硅纳米粒子的合成及其在生物医学中的应用. 生命的化学, 2018, 38(5):707-712. |
| [3] | Chhipa H, Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 2017, 15(1):15-22. |
| [4] | El-Saadony M T, Saad A M, Soliman S M, et al. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Frontiers in Plant Science, 2022, 13:946717. |
| [5] | Verma K K, Song X P, Joshi A, et al. Recent trends in nano- fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials, 2022, 12(1):173. |
| [6] | Usman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment, 2020, 721(15):137778. |
| [7] | Yeasmin S, Dipto A R, Zakir A B, et al. Nanopriming and AI for sustainable agriculture: boosting seed germination and seedling growth with engineered nanomaterials, and smart monitoring through deep learning. ACS Applied Nano Materials, 2024, 7(8):8703-8715. |
| [8] | Geremew A, Carson L, Woldesenbet S, et al.Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard (Brassica juncea). Frontiers in Plant Science, 2023, 14:1108186. |
| [9] | Zafar H, Javed R, Zia M. Nanotoxicity assessment in plants: an updated overview. Environmental Science and Pollution Research, 2023, 30(41):93323-93344. |
| [10] | Azim Z, Singh N B, Singh A, et al. A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: current status and future prospectus. Journal of Plant Biochemistry and Biotechnology, 2022, 32(2):211-224. |
| [11] |
Meier S, Moore F, Morales A, et al. Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiology and Biochemistry, 2020, 151:673-680.
doi: S0981-9428(20)30194-7 pmid: 32353673 |
| [12] | Guzmán-Delgado P, Laca E, Zwieniecki M A. Unravelling foliar water uptake pathways: the contribution of stomata and the cuticle. Plant Cell & Environment, 2021, 44(6):1728-1740. |
| [13] |
An J, Faulkner M M, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 2020, 14(7):7970-7986.
doi: 10.1021/acsnano.9b09178 pmid: 32628442 |
| [14] | Lian J P, Zhao L F, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 2019, 239:124794. |
| [15] | Gao X, Kundu A, Bueno V, et al. Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to solanum lycopersicum following foliar application. Environmental Science & Technology, 2021, 55(20):13551-13560. |
| [16] | Christie P, Zhang S Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science- Nano, 2019, 6(1):41-59. |
| [17] | Wang X R, Xie H G, Wang P, et al. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials, 2023, 16(8):3097. |
| [18] | Wang Z Y, Xie X Y, Zhao J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 2012, 46(8):4434-4441. |
| [19] | Bueno V, Gao X Y, Rahim A A, et al. Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environmental Science & Technology, 2022, 56(10):6722-6732. |
| [20] | Gao X Y, Kundu A, Persson D P, et al. Application of ZnO nanoparticles encapsulated in mesoporous silica on the abaxial side of a Solanum lycopersicum leaf enhances Zn uptake and translocation via the phloem. Environmental Science & Technology, 2023, 57(51):21704-21714. |
| [21] | Schymura S, Fricke T, Hildebrand H, et al. Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling.Angewandte Chemie International Edition, 2017, 56(26):7411-7414. |
| [22] | Kranjc E, Mazej D, Regvar M, et al. Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environmental Science-Nano, 2017, 5(2):520-532. |
| [23] | Ashworth V, Kim C, et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science-Nano, 2019, 6(8):2311-2331. |
| [24] | Khan M R, Adam V, Rizvi T F, et al. Nanoparticle-plant interactions: two-way traffic. Small, 2019, 15(37):1901794. |
| [25] | Cheng B X, Wang C X, Cao X S, et al. Selenium nanomaterials induce flower enlargement and improve the nutritional quality of cherry tomatoes: pot and field experiments. Environmental Science-Nano, 2022, 9(11):4190-4200. |
| [26] | Song C, Ye F, Zhang H L, et al. Metal (loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 2019, 255(3):113354. |
| [27] | Feng Y, Wang C X, Chen F R, et al. Cerium oxide nanomaterials improve cucumber flowering, fruit yield and quality: the rhizosphere effect. Environmental Science-Nano, 2023, 10(8):2010-2021. |
| [28] | 梅文宇, 付荣杰, 刘林忠, 等. 纳米二氧化硅对黄瓜幼苗生长的影响. 长江蔬菜, 2022(6):7-9. |
| [29] | Lu L, Huang M, Huang Y X, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science-Nano, 2020, 7(6):1692-1703. |
| [30] | Wang R T, Sun L L, Zhang P, et al. Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regulation, 2022, 100(1):85-96. |
| [31] | Fallah R, Gerami M, Ramezani M. Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress. Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342. |
| [32] | Zhang M X, Zhao L Y, et al. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresource Technology, 2024, 391(8):129987. |
| [33] | Semida W M, Abdelkhalik A, Mohamed G F, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 2021, 10(2):421. |
| [34] |
Li D, Zhou C R, Zhang J B, et al. Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway. Journal of Agricultural and Food Chemistry, 2020, 68(37):9888-9895.
doi: 10.1021/acs.jafc.0c03044 pmid: 32809823 |
| [35] | Caixeta O H, et al. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 2021, 11(2):267. |
| [36] | An J, et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science-Nano, 2020, 7(8):2214-2228. |
| [37] | Jhansi K, Jayarambabu N, Reddy K P, et al. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. Biotech, 2017, 7:263. |
| [38] |
Rizwan M, Ali S, Qayyum M F, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. Journal of Hazardous Materials, 2017, 322:2-16.
doi: S0304-3894(16)30499-X pmid: 27267650 |
| [39] | Sembada A A, Maki S, Faizal A, et al. The role of silica nanoparticles in promoting the germination of tomato (Solanum lycopersicum) seeds. Nanomaterials, 2023, 13(14):2110. |
| [40] |
Cappetta E, Del Regno C, Conte M, et al. An integrated multilevel approach unveils complex seed-nanoparticle interactions and their implications for seed priming. ACS Nano, 2023, 17 (22):22539-22552.
doi: 10.1021/acsnano.3c06172 pmid: 37931310 |
| [41] |
Landa P. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms. Plant Physiology and Biochemistry, 2021, 161:12-24.
doi: 10.1016/j.plaphy.2021.01.039 pmid: 33561657 |
| [42] |
Nayeri S, Dolatyari M, Mouladoost N, et al. Ag/ZnO core-shell NPs boost photosynthesis and growth rate in wheat seedlings under simulated full sun spectrum. Scientific Reports, 2023, 13(1):14385.
doi: 10.1038/s41598-023-41575-7 pmid: 37658127 |
| [43] | Abbasifar A, Shahrabadi F, ValizadehKaji B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 2020, 43(8):1104-1118. |
| [44] | 鲁力. 四氧化三锰纳米酶促进植物生长与增强抗逆的研究. 南京:南京大学, 2021. |
| [45] | Faizan M, Faraz A, Yusuf M, et al. Zinc oxide nanoparticle- mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 2018, 56(2):678-686. |
| [46] | Wang C X, Liu X F, Li J, et al. Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289(15):117912. |
| [47] |
Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2020, 156:64-77.
doi: S0981-9428(20)30424-1 pmid: 32906023 |
| [48] | Dimkpa C O, Bindraban P S. Nanofertilizers: new products for the industry. Journal of Agricultural and Food Chemistry, 2018, 66(26):6462-6473. |
| [49] | Kareem H A, Saleem M F, Saleem S, et al. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Frontiers in Plant Science, 2022, 13:842349. |
| [50] | Ghabel V K, Karamian R. Effects of TiO2nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Botanica Croatica, 2020, 79(2):137-147. |
| [51] | Wang A B, Al-Huqail A A, et al. Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials, 2021, 11(10):2670. |
| [52] |
Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 2021, 160:257-268.
doi: 10.1016/j.plaphy.2021.01.028 pmid: 33529801 |
| [53] |
Sharma D, Afzal S, Singh N K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 2021, 336:64-75.
doi: 10.1016/j.jbiotec.2021.06.014 pmid: 34116127 |
| [54] | El-Badri A M, Batool M, Wang C Y, et al. Selenium and zinc oxide nanoparticles modulate the molecular and morpho- physiological processes during seed germination of Brassica napus under salt stress Ecotoxicology and Environmental Safety, 2021, 225:112695. |
| [55] | Khan M N, et al. CeO2 Nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Challenges, 2022, 6(7):2200025. |
| [56] | Rath A, Das A B. Chromium stress induced oxidative burst in Vigna mungo L. Hepper: physio-molecular and antioxidative enzymes regulation in cellular homeostasis. Physiology and Molecular Biology of Plants, 2021, 27:265-279. |
| [57] | Fallah R, Gerami M, Ramezani M. Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress. Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342. |
| [58] | Ahmed T, Noman M, Ijaz M, et al. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: a way forward towards sustainable agriculture. Ecotoxicology and Environmental Safety, 2021, 227(20):111288. |
| [59] | Kumar D, Dhankher O P, Tripathi R D, et al. Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L.. Journal of Hazardous Materials, 2023, 454(15):131418. |
| [60] | Pho Q H, Losic D, Ostrikov K, et al. Perspectives on plasma- assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry & Engineering, 2020 (5):1374-1396. |
| [61] | Liu J H, Chen L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 2021, 19(1):153. |
| [62] |
Van Nguyen D, Nguyen H M, et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 2022, 41(1):364-375.
doi: 10.1007/s00344-021-10301-w |
| [63] | Ghani M I, Saleem S, Rather S A, et al. Foliar application of zinc oxide nanoparticles: an effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 2021, 289:133202. |
| [64] | Wan X Y, Niu J F, et al. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low- temperature stress. Journal of Nanobiotechnology, 2024, 22(1):268. |
| [65] | Huang C P, Qin N N, Sun L, et al. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. International Journal of Molecular Sciences, 2018, 19(7):1913. |
| [66] | Mahmoud A W M, Abdeldaym E A, Abdelaziz S M, et al. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy-Basel, 2020, 10(1):19. |
| [67] | Hu J, Qi J, et al. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4nanoparticles improved rapeseed salt tolerance. Stress Biology, 2022, 2(1):46. |
| [68] | Wang X N, Cui X L, et al. Physiological and metabolomic analyses reveal that Fe3O4 nanoparticles ameliorate cadmium and arsenic toxicity in Panax notoginseng. Environmental Pollution, 2023, 337(15):122578. |
| [69] | Zou C M, Wang R T, et al. Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. Journal of Nanobiotechnology, 2022, 20(1):302. |
| [70] | Tan W J, Peralta-Videa J R, et al. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiology and Biochemistry, 2016, 110:210-225. |
| [71] |
Singh A V, Laux P, Luch A, et al. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods, 2019, 29(5):378-387.
doi: 10.1080/15376516.2019.1566425 pmid: 30636497 |
| [72] |
Ghosh M, Ghosh I, Godderis L, et al. Genotoxicity of engineered nanoparticles in higher plants. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2019, 842:132-145.
doi: 10.1016/j.mrgentox.2019.01.002 |
| [73] | Wahid I, Kumari S, Ahmad R, et al. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules, 2020, 10(11):1506. |
| [74] | Youssef M S, Elamawi R M. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environmental Science and Pollution Research, 2018, 27(16):18972-18984. |
| [75] | Zoufan P, Baroonian M, Zargar B. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research, 2020, 27(10):11066-11078. |
| [76] | Azhar W, Khan A R, Salam A, et al. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environmental Science and Pollution Research, 2023, 30(10):26137-26149. |
| [77] | Marmiroli M, Marmiroli N, Pagano L. Nanomaterials induced genotoxicity in plant: methods and strategies. Nanomaterials, 2022, 12(10):1658. |
| [78] | Sun Z Q, Xiong T T, Zhang T, et al. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 2019, 28(2):175-188. |
| [1] | 暴增海, 马桂珍, 王淑芳, 等. 海洋放线菌BM-2菌株对黄瓜的促生作用和诱导抗性研究[J]. 作物杂志, 2013, (5): 9498 |
|
||