作物杂志,2025, 第5期: 93–101 doi: 10.16035/j.issn.1001-7283.2025.05.013

• 专题综述 • 上一篇    下一篇

纳米肥料在园艺作物栽培中的作用研究进展

盛彬1,2(), 林志豪1, 武志健1,3, 赵一明1, 叶雪凌2, 吕红豪1, 刘广洋1(), 徐东辉1()   

  1. 1 中国农业科学院蔬菜花卉研究所/蔬菜生物育种全国重点实验室/农业农村部蔬菜质量安全控制重点实验室/农业农村部蔬菜产品质量安全风险评估实验室/国家盐碱地综合利用技术创新中心, 100081, 北京
    2 沈阳农业大学园艺学院, 110866, 辽宁沈阳
    3 湖南农业大学园艺学院, 410000, 湖南长沙
  • 收稿日期:2024-06-08 修回日期:2024-07-24 出版日期:2025-10-15 发布日期:2025-10-21
  • 通讯作者: 刘广洋,主要从事蔬菜产品营养品质与质量安全控制、新型纳米材料制备与功能解析等研究,E-mail:liuguangyang@caas.cn;徐东辉为共同通信作者,主要从事蔬菜营养品质评价、蔬菜产品质量安全与风险评估研究,E-mail:xudonghui@caas.cn
  • 作者简介:盛彬,研究方向为纳米材料对黄瓜生长发育的调控影响,E-mail:s1756313189@163.com
  • 基金资助:
    北京市自然科学基金(6242028);国家重点研发计划项目“地理标志产品特色品质控制技术研究与应用(2022YFF0606800)”;国家现代农业产业体系建设专项(CARS-23-E03);中央级公益性科研院所基本科研业务费专项(IVF-BRF2024013);中央级公益性科研院所基本科研业务费专项(Y2023LM10)

Research Progress on the Role of Nano-Fertilizers in Horticultural Crop Cultivation

Sheng Bin1,2(), Lin Zhihao1, Wu Zhijian1,3, Zhao Yiming1, Ye Xueling2, Lü Honghao1, Liu Guangyang1(), Xu Donghui1()   

  1. 1 Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences / National Key Laboratory of Vegetable Biological Breeding / Key Laboratory of Vegetable Quality and Safety Control, Ministry of Agriculture and Rural Affairs / Laboratory of Vegetable Product Quality and Safety Risk Assessment, Ministry of Agriculture and Rural Affairs / National Technological Innovation Center for Comprehensive Utilization of Saline-Alkali Land, Beijing 100081, China
    2 Horticulture College, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
    3 Horticulture College, Hunan Agricultural University, Changsha 410000, Hunan, China
  • Received:2024-06-08 Revised:2024-07-24 Online:2025-10-15 Published:2025-10-21

摘要:

近年来,在世界人口不断增长的背景下,农业纳米技术作为一个快速兴起的新研究领域已经成为提高作物生产力和养分利用效率的有力工具。农业中的纳米颗粒通常被用作纳米肥料,然而它们的持续应用还可能对园艺作物产生一定的负面影响。因此,本文概述了纳米技术对园艺作物的影响,系统阐述了纳米肥料在作物体内吸收与转运途径、影响园艺作物的主要效应及毒副作用,为纳米技术在园艺作物中应用提供理论指导。

关键词: 纳米肥料, 园艺作物, 促生作用, 毒副作用

Abstract:

In recent years, agricultural nanotechnology has emerged as a transformative research field, offering innovative solutions to enhance crop productivity and nutrient use efficiency amidst growing global population demands. Nanoparticles in agriculture are often used as nano-fertilizers, but their continued use may also have a negative impact on horticultural crops. Therefore, this paper summarized the influence of nanotechnology on horticultural crops, systematically expounded the absorption and transport ways of nano-fertilizer in crops, the main effects and phytotoxic effects of horticultural crops, and provided theoretical guidance for the application of nanotechnology in horticultural crops.

Key words: Nano-fertilizer, Horticultural crop, Growth-promoting effect, Phytotoxic effects

图1

NPs通过不同处理在植物不同部位吸收与转运途径示意图

表1

促进园艺作物生长发育的纳米颗粒

园艺作物Horticultural crop 纳米颗粒NPs 浓度Concentration 方式Way 阶段Stage 参考文献Reference
番茄Solanum lycopersicum Se NPs 75 μg/kg 土壤施用 苗期 [25]
黄瓜Cucumis sativus L. MoS2 NPs 100 mg/kg 根系浸泡 苗期 [26]
黄瓜Cucumis sativus L. CeO2 NPs 10 mg/kg 根系浸泡 苗期 [27]
黄瓜Cucumis sativus L. SiO2 NPs 40 mg/L 叶片喷施 幼苗期 [28]
黄瓜Cucumis sativus L. Mn3O4 NPs 20 mg/L 叶片喷施 苗期 [29]
紫苏Perilla frutescens ZnO NPs 100 mg/L 叶片喷施 幼苗期 [30]
薄荷Mentha canadensis L. MWCNT 200 μg/mL 叶片喷施 苗期 [31]
苜蓿Medicago sativa L. Fe NPs 10 mg/L 浸种+喷叶 幼苗期 [32]
茄子Solanum melongena L. ZnO NPs 50、100 mg/L 叶片喷施 苗期 [33]
辣椒Capsicum annuum L. Se NPs 20 mg/L 叶片喷施 苗期 [34]

图2

NPs通过增强光合作用来改善植物生理示意图

表2

纳米材料对园艺作物非生物胁迫的影响

纳米颗粒
NPs
胁迫
Stress
影响
Effect
参考文献
Reference
PNC(聚丙烯酸涂层CeO2 NPs)

PNC增强了叶片K的保留和Na的排出,从而更好地维持细胞质K+/Na+稳态,从而提高棉花耐盐性。 [61]
CuO NPs
干旱
可以保持玉米叶片水分状态以及叶绿素和类胡萝卜素含量,增加ROS清除酶的活性和产量。 [62]
ZnO NPs
干旱
ZnO NPs通过调控各种形态、生理生化属性,上调抗氧化酶来改善干旱的氧化应激,正向调节黄瓜的耐旱性。 [63]
MgFe-LDHs
低温
MgFe-LDHs通过上调水杨酸刺激CsFAD3表达,降低脱落酸和茉莉酸的水平以支持黄瓜幼苗出苗率和生长,增加过氧化物酶基因的表达和活性。 [64]
Se NPs
低温
叶面喷施Se缓解了低温胁迫下草莓幼苗叶片净光合速率和叶绿素含量下降,提高了草莓幼苗叶片丙二醛和H2O2含量。 [65]
Zn、Si、B

提高了马铃薯株高、地上部干重、叶片相对含水量、光合速率、气孔导度、叶绿素含量和块茎产量。 [66]
PMC和PMO
(聚丙烯酸涂层Mn3O4 NPs)

PNC和PMO处理的油菜植株鲜重、干重、叶绿素含量、Fv/Fm和碳同化率均显著高于对照植株,同时能维持ROS稳态。 [67]
Fe3O4 NPs
重金属
Fe3O4 NPs通过调节离子平衡、抗氧化剂含量和代谢谱来改善Cd/As诱导的生长抑制。 [68]
Fe3O4 NPs、ZnO NPs
重金属
促进植株生长,在Cd毒性作用下提高了株高、根长、地上部和根鲜重并解除Cd胁迫对于烟草生长的不利影响 [69]

图3

NPs应用对植物遗传、形态生理和生化性状的负面影响

[1] Mahapatra D M, Satapathy K C, Panda B. Biofertilizers and nanofertilizers for sustainable agriculture: phycoprospects and challenges. Science of the Total Environment, 2021, 803(10):149990.
[2] 张金波, 白雪, 钟健, 等. 介孔二氧化硅纳米粒子的合成及其在生物医学中的应用. 生命的化学, 2018, 38(5):707-712.
[3] Chhipa H, Nanofertilizers and nanopesticides for agriculture. Environmental Chemistry Letters, 2017, 15(1):15-22.
[4] El-Saadony M T, Saad A M, Soliman S M, et al. Role of nanoparticles in enhancing crop tolerance to abiotic stress: a comprehensive review. Frontiers in Plant Science, 2022, 13:946717.
[5] Verma K K, Song X P, Joshi A, et al. Recent trends in nano- fertilizers for sustainable agriculture under climate change for global food security. Nanomaterials, 2022, 12(1):173.
[6] Usman M, Farooq M, Wakeel A, et al. Nanotechnology in agriculture: current status, challenges and future opportunities. Science of the Total Environment, 2020, 721(15):137778.
[7] Yeasmin S, Dipto A R, Zakir A B, et al. Nanopriming and AI for sustainable agriculture: boosting seed germination and seedling growth with engineered nanomaterials, and smart monitoring through deep learning. ACS Applied Nano Materials, 2024, 7(8):8703-8715.
[8] Geremew A, Carson L, Woldesenbet S, et al.Effect of zinc oxide nanoparticles synthesized from Carya illinoinensis leaf extract on growth and antioxidant properties of mustard (Brassica juncea). Frontiers in Plant Science, 2023, 14:1108186.
[9] Zafar H, Javed R, Zia M. Nanotoxicity assessment in plants: an updated overview. Environmental Science and Pollution Research, 2023, 30(41):93323-93344.
[10] Azim Z, Singh N B, Singh A, et al. A review summarizing uptake, translocation and accumulation of nanoparticles within the plants: current status and future prospectus. Journal of Plant Biochemistry and Biotechnology, 2022, 32(2):211-224.
[11] Meier S, Moore F, Morales A, et al. Synthesis of calcium borate nanoparticles and its use as a potential foliar fertilizer in lettuce (Lactuca sativa) and zucchini (Cucurbita pepo). Plant Physiology and Biochemistry, 2020, 151:673-680.
doi: S0981-9428(20)30194-7 pmid: 32353673
[12] Guzmán-Delgado P, Laca E, Zwieniecki M A. Unravelling foliar water uptake pathways: the contribution of stomata and the cuticle. Plant Cell & Environment, 2021, 44(6):1728-1740.
[13] An J, Faulkner M M, et al. Nanoparticle charge and size control foliar delivery efficiency to plant cells and organelles. ACS Nano, 2020, 14(7):7970-7986.
doi: 10.1021/acsnano.9b09178 pmid: 32628442
[14] Lian J P, Zhao L F, et al. Foliar spray of TiO2 nanoparticles prevails over root application in reducing Cd accumulation and mitigating Cd-induced phytotoxicity in maize (Zea mays L.). Chemosphere, 2019, 239:124794.
[15] Gao X, Kundu A, Bueno V, et al. Uptake and translocation of mesoporous SiO2-coated ZnO nanoparticles to solanum lycopersicum following foliar application. Environmental Science & Technology, 2021, 55(20):13551-13560.
[16] Christie P, Zhang S Z. Uptake, translocation, and transformation of metal-based nanoparticles in plants: recent advances and methodological challenges. Environmental Science- Nano, 2019, 6(1):41-59.
[17] Wang X R, Xie H G, Wang P, et al. Nanoparticles in plants: uptake, transport and physiological activity in leaf and root. Materials, 2023, 16(8):3097.
[18] Wang Z Y, Xie X Y, Zhao J, et al. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology, 2012, 46(8):4434-4441.
[19] Bueno V, Gao X Y, Rahim A A, et al. Uptake and translocation of a silica nanocarrier and an encapsulated organic pesticide following foliar application in tomato plants. Environmental Science & Technology, 2022, 56(10):6722-6732.
[20] Gao X Y, Kundu A, Persson D P, et al. Application of ZnO nanoparticles encapsulated in mesoporous silica on the abaxial side of a Solanum lycopersicum leaf enhances Zn uptake and translocation via the phloem. Environmental Science & Technology, 2023, 57(51):21704-21714.
[21] Schymura S, Fricke T, Hildebrand H, et al. Elucidating the role of dissolution in CeO2 nanoparticle plant uptake by smart radiolabeling.Angewandte Chemie International Edition, 2017, 56(26):7411-7414.
[22] Kranjc E, Mazej D, Regvar M, et al. Foliar surface free energy affects platinum nanoparticle adhesion, uptake, and translocation from leaves to roots in arugula and escarole. Environmental Science-Nano, 2017, 5(2):520-532.
[23] Ashworth V, Kim C, et al. Delivery, uptake, fate, and transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science-Nano, 2019, 6(8):2311-2331.
[24] Khan M R, Adam V, Rizvi T F, et al. Nanoparticle-plant interactions: two-way traffic. Small, 2019, 15(37):1901794.
[25] Cheng B X, Wang C X, Cao X S, et al. Selenium nanomaterials induce flower enlargement and improve the nutritional quality of cherry tomatoes: pot and field experiments. Environmental Science-Nano, 2022, 9(11):4190-4200.
[26] Song C, Ye F, Zhang H L, et al. Metal (loid) oxides and metal sulfides nanomaterials reduced heavy metals uptake in soil cultivated cucumber plants. Environmental Pollution, 2019, 255(3):113354.
[27] Feng Y, Wang C X, Chen F R, et al. Cerium oxide nanomaterials improve cucumber flowering, fruit yield and quality: the rhizosphere effect. Environmental Science-Nano, 2023, 10(8):2010-2021.
[28] 梅文宇, 付荣杰, 刘林忠, 等. 纳米二氧化硅对黄瓜幼苗生长的影响. 长江蔬菜, 2022(6):7-9.
[29] Lu L, Huang M, Huang Y X, et al. Mn3O4 nanozymes boost endogenous antioxidant metabolites in cucumber (Cucumis sativus) plant and enhance resistance to salinity stress. Environmental Science-Nano, 2020, 7(6):1692-1703.
[30] Wang R T, Sun L L, Zhang P, et al. Zinc oxide nanoparticles alleviate cadmium stress by modulating plant metabolism and decreasing cadmium accumulation in Perilla frutescents. Plant Growth Regulation, 2022, 100(1):85-96.
[31] Fallah R, Gerami M, Ramezani M. Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress. Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342.
[32] Zhang M X, Zhao L Y, et al. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresource Technology, 2024, 391(8):129987.
[33] Semida W M, Abdelkhalik A, Mohamed G F, et al. Foliar application of zinc oxide nanoparticles promotes drought stress tolerance in eggplant (Solanum melongena L.). Plants, 2021, 10(2):421.
[34] Li D, Zhou C R, Zhang J B, et al. Nanoselenium foliar applications enhance the nutrient quality of pepper by activating the capsaicinoid synthetic pathway. Journal of Agricultural and Food Chemistry, 2020, 68(37):9888-9895.
doi: 10.1021/acs.jafc.0c03044 pmid: 32809823
[35] Caixeta O H, et al. Nanotechnology potential in seed priming for sustainable agriculture. Nanomaterials, 2021, 11(2):267.
[36] An J, et al. Emerging investigator series: molecular mechanisms of plant salinity stress tolerance improvement by seed priming with cerium oxide nanoparticles. Environmental Science-Nano, 2020, 7(8):2214-2228.
[37] Jhansi K, Jayarambabu N, Reddy K P, et al. Biosynthesis of MgO nanoparticles using mushroom extract: effect on peanut (Arachis hypogaea L.) seed germination. Biotech, 2017, 7:263.
[38] Rizwan M, Ali S, Qayyum M F, et al. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. Journal of Hazardous Materials, 2017, 322:2-16.
doi: S0304-3894(16)30499-X pmid: 27267650
[39] Sembada A A, Maki S, Faizal A, et al. The role of silica nanoparticles in promoting the germination of tomato (Solanum lycopersicum) seeds. Nanomaterials, 2023, 13(14):2110.
[40] Cappetta E, Del Regno C, Conte M, et al. An integrated multilevel approach unveils complex seed-nanoparticle interactions and their implications for seed priming. ACS Nano, 2023, 17 (22):22539-22552.
doi: 10.1021/acsnano.3c06172 pmid: 37931310
[41] Landa P. Positive effects of metallic nanoparticles on plants: overview of involved mechanisms. Plant Physiology and Biochemistry, 2021, 161:12-24.
doi: 10.1016/j.plaphy.2021.01.039 pmid: 33561657
[42] Nayeri S, Dolatyari M, Mouladoost N, et al. Ag/ZnO core-shell NPs boost photosynthesis and growth rate in wheat seedlings under simulated full sun spectrum. Scientific Reports, 2023, 13(1):14385.
doi: 10.1038/s41598-023-41575-7 pmid: 37658127
[43] Abbasifar A, Shahrabadi F, ValizadehKaji B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. Journal of Plant Nutrition, 2020, 43(8):1104-1118.
[44] 鲁力. 四氧化三锰纳米酶促进植物生长与增强抗逆的研究. 南京:南京大学, 2021.
[45] Faizan M, Faraz A, Yusuf M, et al. Zinc oxide nanoparticle- mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica, 2018, 56(2):678-686.
[46] Wang C X, Liu X F, Li J, et al. Copper nanoclusters promote tomato (Solanum lycopersicum L.) yield and quality through improving photosynthesis and roots growth. Environmental Pollution, 2021, 289(15):117912.
[47] Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: an omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 2020, 156:64-77.
doi: S0981-9428(20)30424-1 pmid: 32906023
[48] Dimkpa C O, Bindraban P S. Nanofertilizers: new products for the industry. Journal of Agricultural and Food Chemistry, 2018, 66(26):6462-6473.
[49] Kareem H A, Saleem M F, Saleem S, et al. Zinc oxide nanoparticles interplay with physiological and biochemical attributes in terminal heat stress alleviation in mungbean (Vigna radiata L.). Frontiers in Plant Science, 2022, 13:842349.
[50] Ghabel V K, Karamian R. Effects of TiO2nanoparticles and spermine on antioxidant responses of Glycyrrhiza glabra L. to cold stress. Acta Botanica Croatica, 2020, 79(2):137-147.
[51] Wang A B, Al-Huqail A A, et al. Mechanisms of chitosan nanoparticles in the regulation of cold stress resistance in banana plants. Nanomaterials, 2021, 11(10):2670.
[52] Zulfiqar F, Ashraf M. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 2021, 160:257-268.
doi: 10.1016/j.plaphy.2021.01.028 pmid: 33529801
[53] Sharma D, Afzal S, Singh N K. Nanopriming with phytosynthesized zinc oxide nanoparticles for promoting germination and starch metabolism in rice seeds. Journal of Biotechnology, 2021, 336:64-75.
doi: 10.1016/j.jbiotec.2021.06.014 pmid: 34116127
[54] El-Badri A M, Batool M, Wang C Y, et al. Selenium and zinc oxide nanoparticles modulate the molecular and morpho- physiological processes during seed germination of Brassica napus under salt stress Ecotoxicology and Environmental Safety, 2021, 225:112695.
[55] Khan M N, et al. CeO2 Nanoparticles seed priming increases salicylic acid level and ROS scavenging ability to improve rapeseed salt tolerance. Global Challenges, 2022, 6(7):2200025.
[56] Rath A, Das A B. Chromium stress induced oxidative burst in Vigna mungo L. Hepper: physio-molecular and antioxidative enzymes regulation in cellular homeostasis. Physiology and Molecular Biology of Plants, 2021, 27:265-279.
[57] Fallah R, Gerami M, Ramezani M. Beneficial role of multi- walled carbon nanotubes on physiological and phytochemical responses of Mentha piperita L. under salinity stress. Journal of Essential Oil Bearing Plants, 2023, 26(2):323-342.
[58] Ahmed T, Noman M, Ijaz M, et al. Current trends and future prospective in nanoremediation of heavy metals contaminated soils: a way forward towards sustainable agriculture. Ecotoxicology and Environmental Safety, 2021, 227(20):111288.
[59] Kumar D, Dhankher O P, Tripathi R D, et al. Titanium dioxide nanoparticles potentially regulate the mechanism(s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L.. Journal of Hazardous Materials, 2023, 454(15):131418.
[60] Pho Q H, Losic D, Ostrikov K, et al. Perspectives on plasma- assisted synthesis of N-doped nanoparticles as nanopesticides for pest control in crops. Reaction Chemistry & Engineering, 2020 (5):1374-1396.
[61] Liu J H, Chen L L, et al. Cerium oxide nanoparticles improve cotton salt tolerance by enabling better ability to maintain cytosolic K+/Na+ ratio. Journal of Nanobiotechnology, 2021, 19(1):153.
[62] Van Nguyen D, Nguyen H M, et al. Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 2022, 41(1):364-375.
doi: 10.1007/s00344-021-10301-w
[63] Ghani M I, Saleem S, Rather S A, et al. Foliar application of zinc oxide nanoparticles: an effective strategy to mitigate drought stress in cucumber seedling by modulating antioxidant defense system and osmolytes accumulation. Chemosphere, 2021, 289:133202.
[64] Wan X Y, Niu J F, et al. Enhancing iron content and growth of cucumber seedlings with MgFe-LDHs under low- temperature stress. Journal of Nanobiotechnology, 2024, 22(1):268.
[65] Huang C P, Qin N N, Sun L, et al. Selenium improves physiological parameters and alleviates oxidative stress in strawberry seedlings under low-temperature stress. International Journal of Molecular Sciences, 2018, 19(7):1913.
[66] Mahmoud A W M, Abdeldaym E A, Abdelaziz S M, et al. Synergetic effects of zinc, boron, silicon, and zeolite nanoparticles on confer tolerance in potato plants subjected to salinity. Agronomy-Basel, 2020, 10(1):19.
[67] Hu J, Qi J, et al. Improvement of leaf K+ retention is a shared mechanism behind CeO2 and Mn3O4nanoparticles improved rapeseed salt tolerance. Stress Biology, 2022, 2(1):46.
[68] Wang X N, Cui X L, et al. Physiological and metabolomic analyses reveal that Fe3O4 nanoparticles ameliorate cadmium and arsenic toxicity in Panax notoginseng. Environmental Pollution, 2023, 337(15):122578.
[69] Zou C M, Wang R T, et al. Comparative physiological and metabolomic analyses reveal that Fe3O4 and ZnO nanoparticles alleviate Cd toxicity in tobacco. Journal of Nanobiotechnology, 2022, 20(1):302.
[70] Tan W J, Peralta-Videa J R, et al. Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiology and Biochemistry, 2016, 110:210-225.
[71] Singh A V, Laux P, Luch A, et al. Review of emerging concepts in nanotoxicology: opportunities and challenges for safer nanomaterial design. Toxicology Mechanisms and Methods, 2019, 29(5):378-387.
doi: 10.1080/15376516.2019.1566425 pmid: 30636497
[72] Ghosh M, Ghosh I, Godderis L, et al. Genotoxicity of engineered nanoparticles in higher plants. Mutation Research-Genetic Toxicology and Environmental Mutagenesis, 2019, 842:132-145.
doi: 10.1016/j.mrgentox.2019.01.002
[73] Wahid I, Kumari S, Ahmad R, et al. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems. Biomolecules, 2020, 10(11):1506.
[74] Youssef M S, Elamawi R M. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. Environmental Science and Pollution Research, 2018, 27(16):18972-18984.
[75] Zoufan P, Baroonian M, Zargar B. ZnO nanoparticles-induced oxidative stress in Chenopodium murale L, Zn uptake, and accumulation under hydroponic culture. Environmental Science and Pollution Research, 2020, 27(10):11066-11078.
[76] Azhar W, Khan A R, Salam A, et al. Ethylene accelerates copper oxide nanoparticle-induced toxicity at physiological, biochemical, and ultrastructural levels in rice seedlings. Environmental Science and Pollution Research, 2023, 30(10):26137-26149.
[77] Marmiroli M, Marmiroli N, Pagano L. Nanomaterials induced genotoxicity in plant: methods and strategies. Nanomaterials, 2022, 12(10):1658.
[78] Sun Z Q, Xiong T T, Zhang T, et al. Influences of zinc oxide nanoparticles on Allium cepa root cells and the primary cause of phytotoxicity. Ecotoxicology, 2019, 28(2):175-188.
[1] 暴增海, 马桂珍, 王淑芳, 等. 海洋放线菌BM-2菌株对黄瓜的促生作用和诱导抗性研究[J]. 作物杂志, 2013, (5): 94–98
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!