作物杂志,2016, 第5期: 1–7 doi: 10.16035/j.issn.1001-7283.2016.05.001

• 专题综述 •    下一篇

转基因作物安全评价研究进展

焦悦,梁晋刚,翟勇   

  1. 农业部科技发展中心,100122,北京
  • 收稿日期:2016-06-20 修回日期:2016-08-12 出版日期:2016-10-15 发布日期:2018-08-26
  • 通讯作者: 翟勇
  • 作者简介:焦悦,农艺师,从事转基因生物安全评价与管理研究
  • 基金资助:
    转基因生物新品种培育科技重大专项(2014ZX08011-04B);转基因生物新品种培育科技重大专项(2016ZX08011-003)

Progress in Safety Assessment of Genetically Modified Crops

Jiao Yue,Liang Jingang,Zhai Yong   

  1. Development Center of Science and Technology,Ministry of Agriculture,Beijing 100122,China
  • Received:2016-06-20 Revised:2016-08-12 Online:2016-10-15 Published:2018-08-26
  • Contact: Yong Zhai

摘要:

转基因技术是现代生物技术的核心之一,在缓解资源约束、保障粮食安全、保护生态安全、拓展农业功能等方面呈现出重要作用和巨大潜力。同时,也为公众带来关于转基因生物安全的忧虑。为此,包括我国在内的世界上很多国家和国际组织都制定了与转基因生物安全管理相关的法律法规和规章制度,以加强对转基因生物的研发、生产、加工、经营和进出口活动的管理。通过介绍我国转基因植物安全评价的主要内容、综述转基因作物安全评价的研究现状,并对我国转基因作物安全评价的发展进行思考和探索,以期为我国转基因生物安全管理提供参考。

关键词: 转基因作物, 农业, 安全评价

Abstract:

As the core of modern biotechnology, transgenic technology shows great potential in resolving food and resource scarcity, and environmental contamination. China and many countries in the world have formulated laws and regulations on the safety of genetically modified organisms (GMOs), in order to strengthen the administration of research, testing, processing, marketing, importing and exporting of GMOs. The main contents of safety assessment for transgenic plants in China, the general research progress of safety assessment around the world were reviewed, and the suggestions on safety assessment of transgenic crops in China were also proposed.

Key words: Transgenic crop, Agriculture, Safety assessment

表1

转基因作物安全性研究文献分类情况(2002-2012年)[6]"

主题Topic 文章数量
Paper number
百分比(%)
Proportion
转基因作物一般性文献 166 9.3
转基因作物对环境影响 847 47.5
生物多样性 579 32.5
基因漂移 268 15.0
对野生近缘种影响 113 6.3
对其他作物影响 96 5.4
对土壤微生物影响 59 3.3
转基因作物对人类和动物健康影响 770 43.2
实质等同原则 46 2.6
无目标方法评价 107 6.0
转基因食品和饲料食用安全性 312 17.5
可追溯性 305 17.1

图1

转基因作物对环境影响的研究文献[6]"

表2

主要转基因农作物田间隔离距离[35]"

作物Crop 隔离距离(m)
Separation distance
备注Note
玉米Maize 300 或花期隔离25d以上
小麦Wheat 100 或花期隔离20d以上
大麦Barley 100 或花期隔离20d以上
芸薹属Brassica 1 000
棉花Cotton 150
水稻Rice 100 或花期隔离20d以上
大豆Soybean 100
番茄Tomato 100
烟草Tobacco 400
高粱Sorghum 500
马铃薯Potato 100
南瓜Pumpkin 700
苜蓿Alfalfa 300
黑麦草Ryegrass 300
辣椒Hot pepper 100

图2

转基因作物对人类和动物健康影响的研究文献[6]"

[1] 沈平, 章秋艳, 林友华 , 等. 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 2016,36(4):24-29.
doi: 10.13523/j.cb.20160404
[2] Macnaghten P, Carro-Ripalda S , Burity J .A new approach to governing GM crops:global lessons from the rising powers.Durham University Working Paper, 2014, Durham,UK.
[3] Vain P . Trends in GM crop,food and feed safety literature. Nature Biotechnology, 2007,25:624-626.
doi: 10.1038/nbt0607-624b pmid: 17557092
[4] European Commission . A decade of EU-funded GMO research.[2010-06-18]..
[5] 刘华清, 李胜清, 陈浩 . 转基因作物安全评价及检测技术. 华中农业大学学报(社会科学版), 2010(6):14-19.
[6] Nicolia A, Manzo A, Veronesi F , et al. An overview of the last 10 years of genetically engineered crop safety research. Critical Reviews in Biotechnology, 2013,34:77-88.
doi: 10.3109/07388551.2013.823595 pmid: 24041244
[7] 农业部农业转基因生物安全管理办公室. 国外转基因知多少.北京: 中国农业出版社, 2015.
[8] Ramessar K, Capell T, Twyman R M , et al. Trace and traceability-a call for regulatory harmony. Nature Biotechnology, 2008,26:975-978.
doi: 10.1038/nbt0908-975 pmid: 18779799
[9] ABCA. The official Australian reference guide to agricultural biotechnology and GM crops (2nd edition). The Agricultural Biotechnology Council of Australia ( ABCA), 2015.
[10] Kostov K, Krogh P H, Damgaard C F , et al. Are soil microbial endpoints changed by Bt crops compared with conventional crops? A systematic review protocol. Environmental Evidence, 2014,3:11.
doi: 10.1186/2047-2382-3-11
[11] Liang J, Sun S, Ji J , et al. Comparison of the rhizosphere bacterial communities of Zigongdongdou soybean and a high-methionine transgenic line of this cultivar. PLoS One, 2014,9:e103343.
doi: 10.1371/journal.pone.0103343
[12] Liang J, Meng F, Sun S , et al. Community structure of arbuscular mycorrhizal fungi in rhizospheric soil of a transgenic high-methionine soybean and a near isogenic variety, PLoS One, 2015,10:e0145001.
doi: 10.1371/journal.pone.0145001
[13] Liang J, Xin L, Meng F , et al.High-methionine soybean has no adverse effect on functional diversity of rhizosphere microorganisms.Plant, Soil and Environment, 2016 ( accepted).
[14] Wu J, Yu M, Xu J , et al. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil. PLoS One, 2014,9:e98394.
doi: 10.1371/journal.pone.0098394
[15] Zhang Y, Xie M, Peng D . Effects of the transgenic CrylAc and CpTI insect-resistant cotton SGK321 on rhizosphere soil microorganism populations in northern China.Plant, Soil and Environment, 2014,60:285-289.
doi: 10.17221/PSE
[16] Li Y, Zhang X, Chen X , et al. Consumption of Bt rice pollen containing Cry1C or Cry2A does not pose a risk to Propylea japonica (Thunberg) (Coleoptera:Coccinellidae). Scientific Reports, 2015,5:7679.
doi: 10.1038/srep07679
[17] Emani C. The effects of transgenic crops on non-target organisms.Biotechnology and Biodiversity, Springer International Publishing, 2014: 59-66.
[18] de Castro T R, Ausique J J S, Nunes D H , et al. Risk assessment of cry toxins of Bacillus thuringiensis on the predatory mites Euseius concordis and Neoseiulus californicus (Acari:Phytoseiidae). Experimental and Applied Acarology, 2013,59:421-433.
doi: 10.1007/s10493-012-9620-3
[19] Baxter S W , Badenes-Pérez F R,Morrison A,et al.Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics, 2011,189:675-679.
doi: 10.1534/genetics.111.130971
[20] Shaner D L, Lindenmeyer R B, Ostlie M H . What have the mechanisms of resistance to glyphosate taught us? Pest Management Science, 2012,68:3-9.
doi: 10.1002/ps.2261 pmid: 21842528
[21] 朱家林, 贺娟, 牛建群 , 等. 风向因素对转基因抗虫棉花基因漂移效率的影响. 生态学报, 2013,33(21):6803-6812.
doi: 10.5846/stxb201207040932
[22] Mertens M.Assessment of environmental impacts of genetically modified plants.Implementation of the Biosafety Protocol Development of Assessment Bases, 2008, FKZ 20167430/07.
[23] Wang K, Li X . Pollen dispersal of cultivated soybean into wild soybean under natural conditions. Crop Science, 2013,53:2497-2505.
doi: 10.2135/cropsci2012.07.0423
[24] Wang K, Li X . Synchronous evidence from both phenotypic and molecular signatures for the natural occurrence of sympatric hybridization between cultivated soybean (Glycine max) and its wild progenitor (G.soja). Genetic Resources and Crop Evolution, 2014,61:235-246.
doi: 10.1007/s10722-013-0030-0
[25] 卢宝荣, 戎俊 . 转基因水稻的外源基因逃逸及其环境安全.北京: 中国环境科学出版社, 2006: 101-109.
[26] Chun Y, Kim D, Park K , et al. Gene flow from herbicide-tolerant GM rice and the heterosis of GM rice-weed F2 progeny. Planta, 2011,233:807-815.
doi: 10.1007/s00425-010-1339-y pmid: 21212977
[27] Zuo J, Zhang L, Song X , et al. Innate factors causing differences in gene flow frequency from transgenic rice to different weedy rice biotypes. Pest Management Science, 2011,67:677-690.
doi: 10.1002/ps.v67.6
[28] Wang F, Yuan Q H, Shi L , et al. A large-scale field study of transgene flow from cultivated rice (Oryza sativa) to common wild rice (O.rufipogon) and barnyard grass (Echinochloa crusgalli). Plant Biotechnology Journal, 2006,4:667-676.
doi: 10.1111/pbi.2006.4.issue-6
[29] Xia H, Lu B R, Xu K , et al. Enhanced yield performance of Bt rice under target-insect attacks:implications for field insect management. Transgenic Research, 2011,20:655-664.
doi: 10.1007/s11248-010-9449-7
[30] Yang X, Xia H, Wang W , et al. Transgenes for insect resistance reduce herbivory and enhance fecundity in advanced generations of crop-weed hybrids of rice. Evolutionary Applications, 2011,4:672-684.
doi: 10.1111/eva.2011.4.issue-5
[31] 李宁, 何康来, 崔蕾 , 等. 转基因抗虫玉米环境安全性及我国应用前景. 植物保护, 2011,37(6):18-26.
doi: 10.3969/j.issn.0529-1542.2011.06.003
[32] Kwit C, Moon H S, Warwick S I , et al. Transgene introgression in crop relatives:molecular evidence and mitigation strategies. Trends in Biotechnology, 2011,29:284-293.
doi: 10.1016/j.tibtech.2011.02.003 pmid: 21388698
[33] Hu N, Hu J, Jiang X , et al. Establishment and optimization of a regionally applicable maize gene-flow model. Transgenic Research, 2014,23:795-807.
doi: 10.1007/s11248-014-9810-3 pmid: 24962816
[34] 丁伟, 王振华, 李新海 . 转基因抗除草剂大豆的效益、潜在风险及其环境安全性评价. 作物杂志, 2010(6):15-19.
[35] 寇建平 . 农业转基因生物知识100问.2版.北京: 中国农业出版社, 2014.
[36] Meier P, Wackernagel W . Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Research, 2003,12:293-304.
doi: 10.1023/A:1023317104119
[37] Organisation for Economic Co-operation and Development (OECD).Safety Evaluation of Foods Derived by Modern Biotechnology: Concepts and Principles.OECD, 1993.
doi: 10.1057/9780230271326_10
[38] EFSA. Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal, 2011,9:2150.
doi: 10.2903/j.efsa.2011.2150
[39] 武小霞, 彬彬, 王志坤 , 等. 转基因作物的生物安全性管理及安全评价. 作物杂志, 2010(4):1-4.
doi: 10.3969/j.issn.1001-7283.2010.04.001
[40] Bøhn T, Cuhra M, Traavik T , et al. Compositional differences in soybeans on the market:glyphosate accumulates in roundup ready GM soybeans. Food Chemistry, 2014,153:207-215.
doi: 10.1016/j.foodchem.2013.12.054
[41] 农业部农业转基因生物安全管理办公室. 转基因安全评价指南, 2010.
[42] Conko G, Kershen D L, Miller H , et al. A risk-based approach to the regulation of genetically engineered organisms. Nature Biotechnology, 2016,34(5):493-503.
doi: 10.1038/nbt.3568 pmid: 27153279
[1] 王君婵,高致富,李东升,朱冬梅,吴宏亚. 农业信息技术在小麦育种中的应用研究[J]. 作物杂志, 2018, (3): 37–43
[2] 焦悦,付伟,翟勇. RNAi技术在作物中的应用及安全评价研究[J]. 作物杂志, 2018, (1): 9–15
[3] 周彤,陈雯,秦培亮,刘涛,孙成明. 作物水分智能管理研究进展[J]. 作物杂志, 2017, (5): 7–13
[4] 梁晋刚,张正光. 转基因作物种植对土壤生态系统影响的研究进展[J]. 作物杂志, 2017, (4): 1–6
[5] 刘彩霞,李明,杜天庆,崔福柱,薛建福,陈梦妮,祁剑英. 半干旱地区不同前作模式对后茬大豆产量和土壤水分的影响[J]. 作物杂志, 2017, (3): 121–126
[6] 崔石新,樊明寿,贾立国,秦永林,陈杨,王玉芬. 沟垄集雨技术研究进展及其在旱作马铃薯生产中的应用潜力[J]. 作物杂志, 2016, (5): 8–12
[7] 姚杰. 回顾《作物杂志》创刊30年[J]. 作物杂志, 2014, (5): 1–5
[8] 曹永强, 孙石. 回交在转基因作物育种中的应用[J]. 作物杂志, 2014, (1): 9–14
[9] 刘录祥, 赵林姝, 郭会君, 等. 高产、抗逆小麦新品种航麦901简介[J]. 作物杂志, 2013, (5): 157–157
[10] 万建民. 农科楷模 玉米丰碑[J]. 作物杂志, 2013, (5): 4–5
[11] 李召虎. 李竞雄先生的精神在中国农业大学永存[J]. 作物杂志, 2013, (5): 1–2
[12] 高玉良. 大寨人缅怀李竞雄先生[J]. 作物杂志, 2013, (5): 3–3
[13] 姚杰. 李竞雄先生诞辰100周年纪念活动在山西晋中举行[J]. 作物杂志, 2013, (5): 8–8
[14] 赵苗苗, 张文忠, 裴瑶, 等. 农田温室气体N2O排放研究进展[J]. 作物杂志, 2013, (4): 25–31
[15] 吴政卿, 何盛莲, 雷振生, 等. 国审小麦新品种郑麦9962的选育及配套栽培技术[J]. 作物杂志, 2012, (2): 146–147+163
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .