作物杂志,2017, 第4期: 21–26 doi: 10.16035/j.issn.1001-7283.2017.04.004

• 专题综述 • 上一篇    下一篇

冷驯化影响越冬作物光合特性和株型特征的生理基础与分子机制的研究进展

熊辉岩1,2,段瑞君3,王瑞生2   

  1. 1 青海大学农牧学院,810016,青海西宁
    2 青海省春油菜遗传改良重点实验室,810016,青海西宁
    3 青海大学生态环境工程学院,810016,青海西宁
  • 收稿日期:2017-06-13 修回日期:2017-07-12 出版日期:2017-08-15 发布日期:2018-08-26
  • 作者简介:熊辉岩,副教授,从事作物生理与分子生物学方面的工作
  • 基金资助:
    青海省科技应用基础研究计划(2015-ZJ-707)

The Physiological and Molecular Mechanisms on Photosynthesis and Phenotype of Winter-Type Crop in Cold Acclimation

Xiong Huiyan1,2,Duan Ruijun3,Wang Ruisheng2   

  1. 1 College of Agriculture and Animal Husbandry,Qinghai University,Xining 810016,Qinghai,China
    2 Key Labratory of Spring Rape Genetic Improvement of Qinghai Province,Xining 810016,Qinghai,China
    3 College of Eco-Environmental Engineering,Qinghai University,Xining 810016,Qinghai,China
  • Received:2017-06-13 Revised:2017-07-12 Online:2017-08-15 Published:2018-08-26

摘要:

植物在冷驯化过程中,以CBFs(C-repeat binding factor)为调控核心,通过调节冷相关基因的表达而提高抗冷能力。植物应答低温的部分基因还受到光的调节,同时冬性作物与春性作物不同,冬性作物在冷驯化提高抗冷性的同时光合作用、株型等发生协同变化,体现了植物冷驯化机制的复杂性。本文主要综述冬春性作物冷驯化中光合作用和株型表现的研究进展,总结温度和光复杂信号的感知与转导途径,为植物冷驯化机理研究及作物耐冷育种提供参考。

关键词: 冷驯化, 冬性作物, 光合作用, 株型, CBFs

Abstract:

The cold resistance of plants is improved by regulating the expression of cold related genes in cold acclimation. It was found that the chloroplast was one of important organelles in response to low temperature, especially part of the genes responded to low temperature by light regulation in winter crops. The cold resistanc is also improved with changing photosynthesis, phenotype and leaf structure synergistically in cold acclimation. The mechanism of plant in cold acclimation is more complex. This paper reviewed the research progress of crop photosynthesis and plant performance in cold acclimation and summarized the complex signal transduction pathways that CBFs were regulatory core, temperature and light were an integrated signal. It provide reference to study the mechanism of cold acclimation of plants for crop breeding.

Key words: Cold acclimation, Winter-type crop, Photosynthesis, Plant type, CBFs

图1

冬性作物冷驯化CBFs介导的光合变化与株型改变的转导途径[10,14]"

[1] Theocharis A, Clement C, Barka E A . Physiological and molecular changes in plants grown at low temperatures. Planta, 2012,235:1091-1105.
doi: 10.1007/s00425-012-1641-y pmid: 22526498
[2] Zhu J H, Dong C H, Zhu J K . Interplay between cold-responsive gene regulation,metabolism and RNA processing during plant cold acclimation. Current Opinion in Plant Biology, 2007,10(3):290-295.
doi: 10.1016/j.pbi.2007.04.010
[3] Chinnusamy V, Zhu J K, Sunkar R . Gene regulation during cold stress acclimation in plants. Methods in Molecular Biology, 2010,639(1):39-55.
doi: 10.1007/978-1-60761-702-0
[4] 陈晓亚, 薛红卫 . 植物生理与分子生物学.北京, 高等教育出版社, 2012: 660.
[5] Conrath U . Priming of induced plant defense responses. Advances in Botanical Research, 2009,51:361-395.
doi: 10.1016/S0065-2296(09)51009-9
[6] Jung H W, Tschaplinski T J, Wang L , et al. Priming in systemic plant immunity. Science, 2009,324(5923):89-91.
doi: 10.1126/science.1170025 pmid: 19342588
[7] 花庆, 刘小刚, 张静雅 , 等. 小麦冷驯化相关基因及抗寒性分子机理研究进展. 中国农学通报, 2012,28(36):8-22.
doi: 10.3969/j.issn.1000-6850.2012.36.002
[8] Savitch L V, Allard G, Seki M , et al. The effect of over-expression of two Brassica CBF/DREB1-like transcription factors on photosynthetic capacity and freezing tolerance in Brassica napus. Plant & Cell Physiology, 2005,46:1525-1539.
[9] Dahal K, Kane K, Gadapati W , et al. The effects of phenotypic plasticity on photosynthetic performance in winter rye,winter wheat and Brassica napus. Physiologia Plantarum, 2012,144(2):169-188.
doi: 10.1111/ppl.2012.144.issue-2
[10] Dahal K, Kane K, Sarhan F , et al. C-Repeat transcription factors as targets for the maintenance of crop yield under suboptimal growth conditions.Handbook of Plant and Crop Physiology,3rd Ed. Boca Raton: CRC Press, 2013: 313-332.
[11] Dahal K, Martyn G D, Alber N A , et al. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions. Journal of Experimental Botany, 2017,68(3):657-671.
[12] Huner N P A, Bode R, Dahal K , et al. Chloroplast redox imbalance governs phenotypic plasticity:the "grand design of photosynthesis" revisited. Frontiers in Plant Science, 2012,3:255.
[13] Huner N P A, Bode R, Dahal K , et al. Shedding some light on cold acclimation,cold adaptation,and phenotypic plasticity. Botany, 2013,91(3):127-136.
doi: 10.1139/cjb-2012-0174
[14] Huner N P A, Dahal K, Kurepin L V , et al. Potential for increased photosynthetic performance and crop productivity in response to climate change:role of CBFs and gibberellic acid. Frontiers in Chemistry, 2014,2:1-14.
[15] Huner N P A, Dahal K, Bode R , et al. Photosynthetic acclimation,vernalization,crop productivity and the grand design of photosynthesis. Journal of Plant Physiology, 2016,203:29-43.
doi: 10.1016/j.jplph.2016.04.006
[16] Thomashow M F . Molecular basis of plant cold acclimation:insights gained from studying the CBF cold response pathway. Plant Physiology, 2010,154(2):571-577.
doi: 10.1104/pp.110.161794
[17] Lee C M, Thomashow M F . Photoperiodic regulation of the C-repeat binding factor (CBF) cold acclimation pathway and freezing tolerance in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(37):15054-15059.
doi: 10.1073/pnas.1211295109
[18] Ruelland E, Zachowski A . How plants sense temperature. Environmental & Experimental Botany, 2010,69(3):225-232.
[19] Öquist G , Huner N P A.Photosynthesis of overwintering evergreen plants. Annual Review of Plant Biology, 2003,54(1):329-355.
doi: 10.1146/annurev.arplant.54.072402.115741
[20] Strand A, Foyer C H, Gustafsson P , et al. Altering flux through the sucrose biosynthesis pathway in transgenic Arabidopsis thaliana modifies photosynthetic acclimation at low temperatures and the development of freezing tolerance.Plant, Cell & Environment, 2003,26:523-535.
[21] Leonardos E D, Savitch L V , Huner N P A,et al.Daily photosynthetic and C-export patterns in winter wheat leaves during cold stress and acclimation. Physiologia Plantarum, 2003,117:521-531.
doi: 10.1034/j.1399-3054.2003.00057.x
[22] Stitt M, Hurry V M . A plant for all seasons:alterations in photosynthetic carbon metabolism during cold acclimation in Arabidopsis. Current Opinion in Plant Biology, 2002,5:199-206.
doi: 10.1016/S1369-5266(02)00258-3
[23] Dahal K, Kane K, Sarhan F , et al. Cold acclimation inhibits CO2-dependent stimulation of photosynthesis in spring wheat and spring rye. Botany, 2012,90(6):433-444.
doi: 10.1139/b2012-007
[24] Kane K, Dahal K, Badawi M A , et al. Long-term growth under elevated CO2 suppresses biotic stress genes in non-acclimated,but not cold-acclimated winter wheat. Plant & Cell Physiology, 2013,54:1751-1768.
[25] Gray G R, Heath D . A global reorganization of the metabolome in Arabidopsis during cold acclimation is revealed by metabolic fingerprinting. Physiologia Plantarum, 2005,124, 236-248.
doi: 10.1111/ppl.2005.124.issue-2
[26] Boese S R , Huner N P A.Effect of growth temperature and temperature shifts on spinach leaf morphology and photosynthesis. Plant Physiology, 1990,94:1830-1836.
doi: 10.1104/pp.94.4.1830
[27] Gorsuch P A, Pandey S, Atkin O K . Thermal de-acclimation:how permanent are leaf phenotypes when cold-acclimated plants experience warming?.Plant, Cell & Environment, 2010,33:1124-1137.
[28] Gorsuch P A, Pandey S, Atkin O K . Temporal heterogeneity of cold acclimation phenotypes in Arabidopsis leaves.Plant, Cell & Environment, 2010,33:244-258.
doi: 10.1111/j.1365-3040.2009.02074.x pmid: 19906148
[29] Wilson K E, Ivanov A G, Öquist G , et al. Energy balance,organellar redox status and acclimation to environmental stress. Canadian Journal of Botany, 2006,84:1355-1370.
doi: 10.1139/B06-098
[30] Kurepin L V, Dahal K P, Savitch L V , et al. Role of CBFs as integrators of chloroplast redox,phytochrome and plant hormone signaling during cold acclimation. International Journal of Molecular Sciences, 2013,14:12729-12763.
doi: 10.3390/ijms140612729
[31] Ndong C, Danyluk J , Huner N P A,et al.Survey of gene expression in winter rye during changes in either growth temperature,irradiance or excitation pressure. Plant Molecular Biology, 2001,45:691-703.
doi: 10.1023/A:1010684719225
[32] Savitch L V, Harney T , Huner N P A.Sucrose metabolism in spring and winter wheat in response to high irradiance,cold stress and cold acclimation. Physiologia Plantarum, 2000,108:270-278.
doi: 10.1034/j.1399-3054.2000.108003270.x
[33] 霍晨敏, 汤文强 . 植物冷信号传导机制研究进展. 生物技术通报, 2016,32(10):27-33.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.10.008
[34] 夏金婵, 吕强, 郭梅芳 , 等. 植物冷驯化相关信号机制. 中国生物化学与分子生物学报, 2008,24(4):295-301.
doi: 10.3969/j.issn.1007-7626.2008.04.002
[35] 李慧, 强胜 . 植物冷驯化相关基因研究进展. 植物学通报, 2007,24(2):208-217.
doi: 10.3969/j.issn.1674-3466.2007.02.013
[36] 李先文, 李玲, 林阳阳 , 等. 植物细胞叶绿体的低温反应. 生物技术通报, 2016,32(9):1-6.
doi: 10.13560/j.cnki.biotech.bull.1985.2016.09.001
[37] 丁杨林, 施怡婷, 杨淑华 . 植物响应低温胁迫的分子机制研究. 生命科学, 2015,27(3):398-405.
[38] Chinnusamy V, Ohta M, Kanrar S , et al. ICE1:a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes & Development, 2003,17(8):1043-1054.
[39] Fursova O V, Pogorelko G V, Tarasov V A . Identification of ICE2,a gene involved in cold acclimation which determines freezing tolerance in Arabidopsis thaliana. Gene, 2009,429(1/2):98-103.
doi: 10.1016/j.gene.2008.10.016
[40] Vogel J T, Zarka D G , Buskirk H A V,et al.Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant Journal, 2005,41(2):195-211.
[41] Shi Y, Tian S, Hou L , et al. Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell, 2012,24(6):2578-2595.
doi: 10.1105/tpc.112.098640
[42] Shivaji S, Prakash J S . How do bacteria sense and respond to low temperature?. Archives of Microbiology, 2010,192(2):85-95.
doi: 10.1007/s00203-009-0539-y pmid: 20049417
[43] Jia Y, Ding Y, Shi Y . The cbfs triple mutants reveal the essential functions of CBFs in cold acclimation and allow the definition of CBF regulons in Arabidopsis. New Phytologist, 2016,212(2):345-353.
doi: 10.1111/nph.14088
[44] Pocock T H, Hurry V, Savitch L V , et al. Susceptibility to low-temperature photoinhibition and the acquisition of freezing tolerance in winter and spring wheat:the role of growth temperature and irradiance. Physiologia Plantarum, 2001,113:499-506.
doi: 10.1034/j.1399-3054.2001.1130408.x
[45] Kim C, Apel K . Singlet oxygen-mediated signaling in plants:moving from flu to wild type reveals an increasing complexity. Photosynthesis Research, 2013,116:455-464.
doi: 10.1007/s11120-013-9876-4
[46] Murchie E H, Pinto M, Horton P . Agriculture and the new challenges for photosynthesis research. New Phytologist, 2009,181:532-552.
doi: 10.1111/j.1469-8137.2008.02705.x pmid: 19140947
[47] Zhu X G, Long X P, Ort D R . Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010,61(1):235-261.
doi: 10.1146/annurev-arplant-042809-112206 pmid: 20192734
[48] Zhao C, Zhu J K . The broad roles of CBF genes:From development to abiotic stress. Plant Signaling & Behavior, 2016,11(8):e1215794.
doi: 10.1080/15592324.2016.1215794 pmid: 27472659
[1] 王嘉楠 李小艳 魏石美 赵会杰 赵明奇 汪月霞. 5-ALA 对干旱胁迫下小麦幼苗#br# 光合作用及D1 蛋白的调节作用[J]. 作物杂志, 2018, (5): 121–126
[2] 宫彦龙,雷月,夏原野,杜志敏,徐海. 幼穗分化期喷施细胞分裂素(CTK)对水稻穗部性状及株型性状的影响[J]. 作物杂志, 2017, (5): 112–118
[3] 王显瑞, 刘莉莉, 柴晓娇, 等. 外源亚精胺对干旱胁迫下谷子幼苗光合作用及碳水化合物积累的影响[J]. 作物杂志, 2015, (5): 100–106
[4] 胡庆一, 肖刚, 张振乾, 等. 9个光合作用相关基因在高油酸油菜近等基因系不同生育期中的表达研究[J]. 作物杂志, 2015, (4): 11–15
[5] 杨善, 江永, 周鸿凯, 等. 甘蔗光合因子与品质性状的典型相关性分析[J]. 作物杂志, 2015, (4): 69–73
[6] 姜籽竹, 朱恒光, 张倩, 等. 低温胁迫下植物光合作用的研究进展[J]. 作物杂志, 2015, (3): 23–28
[7] 刘晓龙, 徐晨, 徐克章, 等. 盐胁迫对水稻叶片光合作用和叶绿素荧光特性的影响[J]. 作物杂志, 2014, (2): 88–92
[8] 于亚辉, 刘郁, 曾军, 等. 北方两系杂交粳稻及亲本的籼粳成分与株型和产量性状的关系[J]. 作物杂志, 2013, (5): 62–65
[9] 陈剑, 杨振中, 谢甫绨, 陈振武. 施磷酸二铵对不同株型绿豆品种叶片生理生化特性的影响[J]. 作物杂志, 2012, (5): 76–81
[10] 陈刚, 黄收兵, 王璞. 应用数字图像技术对不同株型夏玉米进行高温胁迫诊断[J]. 作物杂志, 2012, (3): 36–38
[11] 孙继, 顾万荣, 赵东旭, 等. 不同株型玉米灌浆期穗位叶可溶性糖含量和子粒淀粉积累关系的研究[J]. 作物杂志, 2012, (2): 80–83
[12] 王娜, 李凤海, 王志斌, 等. 不同耐密型玉米品种茎秆性状对密度的响应及与倒伏的关系[J]. 作物杂志, 2011, (3): 67–70
[13] 刘煜祥, 尹凤祥, 梁杰, 等. 氮肥对绿豆氮磷钾积累分配及产量构成因子的影响[J]. 作物杂志, 2011, (3): 96–100
[14] 马霓, 李玲, 徐军, 李俊, 余利平, 李光明, 张春雷. 甘蓝型油菜抗倒伏性及农艺性状研究[J]. 作物杂志, 2010, (6): 36–41
[15] 林郑和, 陈荣冰, 郭少平. 植物对缺磷的生理适应机制研究进展[J]. 作物杂志, 2010, (5): 5–9
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .