作物杂志,2017, 第6期: 147–153 doi: 10.16035/j.issn.1001-7283.2017.06.024

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

施氮量与无机有机肥配施比例对紫米稻产量形成与米质的影响

卢浩宇1,文浩1,易镇邪1,周铁军2   

  1. 1湖南农业大学农学院/南方粮油作物协同创新中心,410128,湖南长沙
    2湖南粮田农业科技发展有限公司,410007,湖南长沙
  • 收稿日期:2017-07-26 修回日期:2017-08-21 出版日期:2017-12-15 发布日期:2018-08-26
  • 通讯作者: 易镇邪
  • 作者简介:卢浩宇,硕士研究生,研究方向为水稻高产高效栽培
  • 基金资助:
    农业部行业计划项目(201503123-05);国家重点研发计划“粮食丰产增效科技创新”重点专项(2017YFD0301500);湖南省重金属污染耕地修复及农作物种植结构调整试点项目(2016年)

Effects of Nitrogen Application Rate and Ratio of Inorganic and Organic Fertilizers on Yield Formation and Rice Quality of Purple Rice

Lu Haoyu1,Wen Hao1,Yi Zhenxie1,Zhou Tiejun2   

  1. 1College of Agronomy,Hunan Agricultural University/South Regional Collaborative Innovation Center for Grain and Oil Crops in China,Changsha 410128,Hunan,China
    2Hunan Liangtian Agricultural Science and Technology Development Co.,Ltd,Changsha 410007,Hunan,China
  • Received:2017-07-26 Revised:2017-08-21 Online:2017-12-15 Published:2018-08-26
  • Contact: Zhenxie Yi

摘要:

以紫米稻品种粮田紫1号为材料,研究不同施氮量(120、150kg/hm 2)与无机有机肥配施比例(100%∶0、50%∶50%、25%∶75%、0∶100%)对紫米稻产量形成特性与稻米品质的影响。结果表明:(1)随施氮量增加,紫米稻分蘖增加、成穗率提高、叶面积增大、物质积累增多,产量显著提高,相同施氮量条件下以无机肥∶有机肥50%∶50%处理产量最高,25%∶75%处理其次,0∶100%处理产量最低;(2)适当施氮与有机肥可提高紫米稻糙米率和精米率,以无机肥∶有机肥0∶100%处理提高效果最好,50%∶50%处理其次;(3)紫米稻稻米直链淀粉含量随施氮量增大与有机肥比例提高而降低。蛋白质含量因施氮而显著提高,且随有机肥比例提高呈先增后降趋势,无机肥∶有机肥25%∶75%处理最高,50%∶50%处理其次。施氮显著提高紫米稻维生素B1含量,配施有机肥也有一定提升效果,但差异不显著。(4)100%无机肥处理对紫米稻稻米Se、Zn含量没有明显影响,但可显著提高紫米稻稻米Fe含量;而配施有机肥对提高紫米稻稻米Se、Zn和Fe含量效果显著,且一般随有机肥配施比例提高而提高。可见,本试验条件下,施氮量150kg/hm 2、有机肥配施比例为50%~75%有利于紫米稻的高产优质。

关键词: 紫米稻, 无机有机肥配施比例, 产量形成, 米质

Abstract:

The purple rice variety Liangtianzi No.1 was used as the material to study the effects of different nitrogen rate (120kg/hm 2, 150kg/hm 2) and the proportion of inorganic and organic fertilizers (100%∶0, 50%∶50%, 25%∶75%, 0∶100%) on the yield formation characteristics and rice quality of purple rice. The results showed that: (1) With the increment of nitrogen applicatin rate, tillers, spike rate, leaf area and dry matter accumulation were increased, and the yield was increased significantly. At the same time, under the same nitrogen rate, yield of 50%:50% treatment was the highest, the next was 25%∶75% treatment, and yield of 0∶100% treatment was the lowest. (2) Nitrogen application and organic fertilizer could improve the brown rice rate and milled rice rate of purple rice, and the improving effect of 0∶100% treatment was the best, and 50%∶50% treatment was the next. (3) The amylose content in purple rice grain was decreased with the increment of nitrogen application rate and proportion of organic fertilizer. The protein content was increased significantly after application of nitrogen, and which showed the trend of increased firstly and then decreased with the increment of proportion of organic fertilizer, and protein content of purple rice in 25%∶75% treatment was the highest, and followed by 50%∶50% treatment. Nitrogen application significantly increased the content of vitamin B1 in purple rice, organic fertilizer also had certain promotion effect, while the difference was not significant. (4) Effects of the application of pure inorganic fertilizer on content of Se, Zn and Fe of purple rice were not clear, while the improving effect of organic fertilizer on content of Se, Zn and Fe of purple rice was significant, and which was increased with the increment of proportion of organic fertilizer. Therefore, in this study, the nitrogen rate 150kg/hm 2 and proportion of organic fertilizer 50%-75% were advantageous to high yield and quality of purple rice.

Key words: Purple rice, Proportion of inorganic and organic fertilizer, Yield formation, Rice quality

表1

各处理施氮量与无机有机肥比例"

处理
Treatment
施氮量(kg/hm2)
Nitrogen application
rate
无机肥比例(%)
Proportion of
inorganic fertilizer
有机肥比例(%)
Proportion of
organic fertilizer
F1 120 100 0
F2 120 50 50
F3 120 25 75
F4 120 0 100
F5 150 100 0
F6 150 50 50
F7 150 25 75
F8 150 0 100
F9(CK) 0 0 0

图1

不同施肥处理群体茎蘖动态"

图2

不同施肥处理单穴茎蘖动态"

表2

各处理成穗率"

处理Treatment F1 F2 F3 F4 F5 F6 F7 F8 F9
成穗率Spike rate 71.9a 72.8a 72.2a 71.6a 72.9a 73.2a 72.5a 72.0a 61.3b

表3

各处理各时期叶面积指数"

处理Treatment 分蘖盛期Active tillering stage 孕穗期Booting stage 齐穗期Full heading stage 灌浆中期Mid-filling stage
F1 3.88±0.17a 4.53±0.10bc 4.09±0.09c 3.51±0.10c
F2 3.41±0.12b 4.89±0.07ab 4.33±0.11a 3.89±0.13ab
F3 3.25±0.18c 4.61±0.16b 4.13±0.12bc 3.67±0.14b
F4 3.18±0.11c 4.36±0.09c 3.84±0.17d 3.37±0.08d
F5 4.18±0.16a 4.93±0.18ab 4.25±0.13b 3.56±0.18c
F6 3.66±0.12ab 5.17±0.09a 4.41±0.09a 4.02±0.09a
F7 3.31±0.14c 4.66±0.11b 4.19±0.07b 3.83±0.11ab
F8 3.22±0.19c 4.55±0.14b 3.91±0.08d 3.54±0.06c
F9 2.79±0.09d 3.97±0.10d 3.37±0.15e 2.85±0.17e

表4

各处理各时期干物质积累"

处理
Treatment
分蘖盛期
Active tillering stage
孕穗期
Booting stage
齐穗期
Full heading stage
灌浆中期
Mid-filling stage
成熟期
Maturity stage
F1 2.81±0.07c 6.85±0.16d 8.11±0.13e 9.63±0.09e 10.91±0.09f
F2 2.60±0.09d 6.92±0.08d 8.47±0.07d 10.14±0.12d 11.87±0.16d
F3 2.56±0.05d 6.63±0.09e 8.08±0.08e 9.68±0.08e 11.58±0.11e
F4 2.37±0.06e 6.52±0.08e 7.83±0.11f 9.46±0.14f 11.10±0.12f
F5 3.23±0.06a 7.54±0.07a 9.53±0.07b 11.19±0.07bc 12.25±0.07c
F6 3.06±0.11b 7.68±0.12a 9.67±0.12a 11.46±0.08a 12.94±0.12a
F7 3.01±0.05b 7.39±0.09b 9.58±0.09b 11.26±0.16b 12.66±0.16b
F8 2.88±0.13bc 7.21±0.14c 9.36±0.09c 11.09±0.15c 12.38±0.08c
F9 2.09±0.08f 5.34±0.11f 6.11±0.14g 8.37±0.11g 9.08±0.13g

表5

各处理紫米稻产量构成因素"

处理
Treatment
有效穗(×104/hm2)
Effective panicle
每穗粒数
Grain per panicle
结实率(%)
Seed setting rate
千粒重(g)
1000-grain weight
理论产量(kg/hm2)
Theoretical yield
实际产量(kg/hm2)
Actual yield
F1 172±8.1abc 182±13.6d 44.01±0.08e 22.04±0.45d 3 379±59.21d 3 205±47.91de
F2 169±5.6bc 197±15.7ab 47.39±0.09a 22.56±0.39cd 3 688±63.47c 3 559±89.34c
F3 161±2.3c 192±9.8bc 46.28±0.11c 22.75±0.81abc 3 408±29.17d 3 255±86.73d
F4 159±4.2c 196±10.1ab 46.45±0.17bc 22.81±0.47abc 3 241±24.31e 3 128±95.82e
F5 186±4.6a 186±11.3cd 45.55±0.04d 22.36±0.66abc 3 785±32.98c 3 601±64.42c
F6 183±3.4ab 201±12.9a 47.29±0.12ab 23.44±0.59ab 4 209±63.55a 4 077±69.47a
F7 180±5.6abc 195±13.1abc 46.53±0.08bc 23.64±0.62ab 4 001±49.74b 3 861±78.69b
F8 175±6.9abc 191±12.4bc 44.61±0.11e 23.89±0.71a 3 688±57.11c 3 530±63.27c
F9 138±6.7d 172±10.9e 40.19±0.09f 22.14±0.55d 2 218±29.54f 2 016±41.25f

表6

各处理紫米稻糙米率与精米率"

处理
Treatment
糙米率
Brown rice rate
精米率
Milled rice rate
F1 80.72b 61.97c
F2 81.25a 62.04c
F3 81.02a 62.54b
F4 81.46a 62.21c
F5 80.85b 62.68ab
F6 81.49a 62.81ab
F7 81.23a 62.58b
F8 81.57a 63.15a
F9 78.71c 58.97d

表7

各处理紫米稻稻米直链淀粉含量"

处理Treatment 直链淀粉含量The amylose content
F1 11.21±0.57b
F2 10.51±0.27c
F3 10.33±0.42c
F4 9.53±0.40e
F5 11.13±0.68b
F6 10.07±0.52cd
F7 9.88±0.71d
F8 9.47±0.29e
F9 12.58±0.77a

表8

各处理紫米稻稻米粗蛋白与维生素B1含量"

处理
Treatment
粗蛋白含量(%)
Content of crude protein
维生素B1含量(mg/kg)
Content of VB1
F1 9.14±1.21d 0.0309±0.0007a
F2 9.89±0.77b 0.0314±0.0008a
F3 10.21±0.92a 0.0322±0.0012a
F4 9.66±0.69c 0.0327±0.0011a
F5 9.27±0.32d 0.0310±0.0006a
F6 10.02±0.63ab 0.0329±0.0016a
F7 10.38±0.97a 0.0328±0.0013a
F8 9.52±0.57c 0.0326±0.0009a
F9 8.25±0.81e 0.0287±0.0008b

表9

各处理紫米稻稻米3种微量元素含量"

处理
Treatment
Se含量
Content of Se
Zn含量
Content of Zn
Fe含量
Content of Fe
F1 0.0409±0.0007d 22.078±0.337c 37.551±0.988d
F2 0.0422±0.0011c 23.343±0.471b 40.275±0.417c
F3 0.0444±0.0007b 24.101±0.894a 41.578±0.366b
F4 0.0471±0.0006a 24.388±0.616a 42.299±0.859a
F5 0.0405±0.0003d 22.051±0.266c 37.418±0.722d
F6 0.0432±0.0009c 23.622±0.614b 40.914±1.028c
F7 0.0467±0.0005a 24.244±0.571a 41.671±0.774b
F8 0.0473±0.0012a 24.427±0.411a 42.573±0.616a
F9 0.0402±0.0006d 22.016±0.788c 36.812±0.875e
[1] 韩磊, 汪旭东, 徐建第 , 等. 有色稻米研究现状分析.中国稻米, 2003(5):22-24.
[2] 林蒲田 .红米考. 农业考古, 2000(1):221-225.
[3] 赖来展, 张名位, 彭仲明 , 等. 黑米稻种质资源的评价与利用研究.作物品种资源, 1994(S):58-64.
[4] 卢玉娥, 梁耀懋 . 广西紫米稻品种资源.广西农业科学, 1987(3):10-12.
[5] 王琳琳, 凌文华, 马静 , 等. 黑米皮对高脂诱导的家兔动脉粥样硬化形成的影响. 营养学报, 2002,24(4):372-376.
[6] 余飞, 王恩妹, 顾德法 . 黑紫米提高贫血大鼠血红蛋白作用的研究. 营养学报, 1989,11(2):120-125.
[7] 马静, 凌文华, 葛慧 , 等. 红米对大鼠血脂及抗氧化系统的影响. 营养学报, 1999,21(2):232.
[8] 于广星, 侯守贵, 王友芳 , 等. 国内外水稻施肥技术.土壤肥料, 2005(3):40-42.
[9] 胡星 . 秸秆全量还田与有机无机肥配施对水稻产量形成的影响. 扬州:扬州大学, 2008.
[10] 彭耀林, 朱俊英, 唐建军 , 等. 有机无机肥长期配施对水稻产量及干物质生产特性的影响. 江西农业大学学报, 2004,26(4):485-490.
[11] GB/T 15683-2008《大米直链淀粉含量的测定》.
[12] 曹蕊, 曹玉华, 李楠 , 等. 高效液相色谱法测定米糠中的水溶性维生素.食品科技, 2007(11):157-159.
doi: 10.3969/j.issn.1005-9989.2007.11.046
[13] GB 2905 《谷类、豆类作物种子粗蛋白质测定法》.
[14] 李百灵, 周健, 申治国 , 等. ICP-AES和ICP-MS法测定大米中的微量元素.光谱实验室, 2002(5):420-422.
[15] 官春云 . 现代作物栽培学.北京: 高等教育出版社, 2011: 243-245.
[16] 赖来展, 李宝健 . 中华黑米资源的经济特性及其系列食品的营养研究.广东农业科学, 1990(2):5-8.
[17] 王玉娟 . 有色稻与常规粳稻主要农艺性状差异的比较.农业科技通讯, 2015(5):205-208.
[18] 中华人民共和国国家统计局.国家数据.. 2017 -08-14.
[19] 平立燕 . 氮磷钾肥不同配施对水稻产量和效益的影响. 农技服务, 2010,27(2):213-214.
doi: 10.3969/j.issn.1004-8421.2010.02.028
[20] 马国武, 于会丰, 冯继东 .施肥量对水稻产量、效益的影响研究 . 现代农业科技, 2010( 14): 52, 54.
[21] 袁隆平超级稻大面积亩产超1000公斤创世界纪录.. 2017 -08-14.
[22] 袁隆平杂交水稻又创世界纪录:高纬度亩产超1000公斤.. 2017 -08-14.
[23] 王艳博, 黄启为, 孟琳 , 等. 有机无机肥配施对菠菜生长和土壤供氮特性的影响. 南京农业大学学报, 2006,29(3):44-48.
[24] 李世清, 凌莉 . 影响土壤中微生物体氮的因子. 土壤与环境, 2000,9(2):158-162.
doi: 10.3969/j.issn.1674-5906.2000.02.020
[25] 沈芸, 肖鹏, 包劲松 . 水稻营养成分遗传育种研究进展. 核农学报, 2005,22(4):455-460.
[26] 李贺 . 有机-无机肥料配施对水稻养分积累及氮肥利用效率的研究. 沈阳:东北农业大学, 2012.
[27] 贺阳冬, 马均, 魏万蓉 . 不同肥料种类对水稻强化栽培产量及稻米品质的影响. 中国农学通报, 2004,20(6):177-181.
[28] 彭志红, 张冠, 韩成云 , 等. 不同施肥方式对稻米品质及产量的影响.现代农业科技, 2010(16):68-70.
[29] 成明华, 关东胜, 张慧敏 , 等. 10种稻米的品质分析.粮油食品科技, 2001(6):13-16.
[30] GB/T17891-1999《优质稻谷》.
[31] 王康君, 葛立立, 范苗苗 , 等. 稻米蛋白质含量及其影响因素的研究进展.作物杂志, 2011(6):1-6.
[32] 周丽慧, 刘巧泉, 张昌泉 , 等. 水稻种子蛋白质含量及组分在品种间的变异与分布. 作物学报, 2009,35(5):884-891.
doi: 10.3724/SP.J.1006.2009.00884
[1] 陈平平,杨晶,黎娟,屠乃美,易镇邪. 长沙烟区烟稻复种体系晚稻肥密互作效应研究[J]. 作物杂志, 2016, (6): 79–84
[2] 焦玲玲, 姚贤玉, 胡宏伟, 等. 高肥力水平下氮钾肥施用量对超级杂交稻桂两优2号产量形成的影响[J]. 作物杂志, 2014, (6): 106–111
[3] 陈传华, 罗群昌, 陈远孟, 等. 广西近年育成水稻品种米质状况分析[J]. 作物杂志, 2008, (3): 76–78
[4] 李万明. 达州优质稻产业化的主要对策[J]. 作物杂志, 2004, (3): 8–9
[5] 李绍长, 王荣栋. 作物源库理论的发展及其在生产中的应用[J]. 作物杂志, 1998, (1): 10–12
[6] 傅艳华, 孙淑贤, 彭宝. 大豆剪叶片对产量及氮素吸收的影响[J]. 作物杂志, 1997, (2): 27–28
[7] 冉敬才. 川东南山区玉米避伏旱技术及其应用[J]. 作物杂志, 1994, (2): 27–27
[8] 梁亚超, 于艳霞, 杨殿荣, 等. 高粱地膜覆盖高产群体光合性能的研究[J]. 作物杂志, 1992, (2): 40–封三
[9] 张云康, 闵捷, 吳戍君. 稻米胶稠度的测定[J]. 作物杂志, 1985, (4): 34–34
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .