作物杂志,2020, 第5期: 9–16 doi: 10.16035/j.issn.1001-7283.2020.05.002

• 专题综述 • 上一篇    下一篇

种子活力光学无损检测技术研究进展

袁俊1(), 郑雯1,2, 祁亨年1, 高璐1, 胡晓军1, 赵光武2, 施俊生3, 贾良权1()   

  1. 1湖州师范学院信息工程学院,313000,浙江湖州
    2浙江农林大学农业与食品科学学院,311000,浙江杭州
    3浙江省种子管理总站,311000,浙江杭州
  • 收稿日期:2020-02-27 修回日期:2020-05-08 出版日期:2020-10-15 发布日期:2020-10-12
  • 通讯作者: 贾良权
  • 作者简介:袁俊,主要从事光谱技术在农业领域应用,E-mail: ncuspyyuanjun@163.com
  • 基金资助:
    国家自然科学基金(31701512);浙江省重点研发项目(2019C02013);国家重点研发计划(2018YFD100902)

Progress in Research of Optical Non-Destructive Test Technology for Seed Vigor

Yuan Jun1(), Zheng Wen1,2, Qi Hengnian1, Gao Lu1, Hu Xiaojun1, Zhao Guangwu2, Shi Junsheng3, Jia Liangquan1()   

  1. 1School of Information Engineering, Huzhou University, Huzhou 313000, Zhejiang, China
    2School of Agriculture and Food Sciences, Zhejiang A & F University, Hangzhou 311000, Zhejiang, China
    3Zhejiang Seed Management Station, Hangzhou 311000, Zhejiang, China
  • Received:2020-02-27 Revised:2020-05-08 Online:2020-10-15 Published:2020-10-12
  • Contact: Jia Liangquan

摘要:

种子活力检测是种子检测中的重要一环,国际种子检验协会建议的检测方法主要有标准发芽实验法、TTC染色法、电导率测定和加速老化试验等方法。这些检测方法具有检测结果显示直观、测量准确等优点,但也存在对种子有破坏作用、检测过程复杂和耗时耗力等缺点。随着现代免耕直播技术的发展,对种子活力的检测在速度和无损性方面提出了更高的要求,而传统方法难以实现快速无损检测目标。基于光学技术的种子活力检测方法具有效率高、无损的特点,近年来得到了国内外相关学者的关注。本文对光学技术在种子活力检测上的应用进行了综述,介绍了X光、近红外光谱、高光谱、光声光谱、可调谐半导体激光吸收光谱和色选技术等光学技术在种子活力检测中的研究,并对光学技术在种子活力检测的前景进行了展望。

关键词: 种子活力, 光学检测, 无损

Abstract:

As an important part of seed test, there are many methods for testing seed vigor, the ways suggested by International Seed Testing Association are standard germination test, dyeing with TTC staining method, conductivity test, accelerated aging test, etc. With the help of these methods, the results are measured accurately and displayed easily, but the seeds are damaged, the process is complex, time and work are wasted. Nowadays, modern no-tillage technology calls for a new kind of method for testing seed vigor with the higher requirement of less time and non-destruction, while the traditional methods can hardly reach that goal. The ways to test seed vigor based on the optical technology are highly efficient and non-destructive, and have attracted great attention from relevant scholars at home and abroad in recent years. This review pays attention to the application of optical technology in seed vigor test, and introduces the methods like X-ray, near-infrared spectroscopy, hyperspectral imaging, photoacoustic spectroscopy, tunable diode laser absorption spectroscopy and color sorting. Finally, the prospect for optical technology using in seed vigor test is proposed.

Key words: Seed vigor, Optical test, Non-destruction

图1

X光种子活力检测原理

图2

近红外光谱种子活力检测原理

图3

高光谱种子活力检测原理

图4

光声光谱种子活力检测原理

图5

TDLAS技术原理

图6

色选技术种子活力检测原理

[1] Qun S, Wang J H, Sun B Q. Advances on seed vigor physiological and genetic mechanisms. Agricultural Sciences in China, 2007,6(9):1060-1066.
doi: 10.1016/S1671-2927(07)60147-3
[2] Navarro M, Febles G, Herrera R S. Vigor:essential element for seed quality. Cuban Journal of Agricultural Science, 2016,49(4):447-458.
[3] 余波, 杜尚广, 罗丽萍. 种子活力测定方法. 中国科学:生命科学, 2015,45(7):709-713.
[4] 王新忠, 卢青, 张晓东, 等. 基于高光谱图像的黄瓜种子活力无损检测. 江苏农业学报, 2019,35(5):1197-1202.
[5] 范雪婷, 朱明东, 杨晨光, 等. 利用近红外吸收光谱对水稻种子活力的判别方法. 杂交水稻, 2019,34(4):62-67.
[6] 韩亮亮, 毛培胜, 王新国, 等. 近红外光谱技术在燕麦种子活力测定中的应用研究. 红外与毫米波学报, 2008(2):86-90.
[7] Min T G, Hong B R. A simple method to determine amino acid leakage and germination capabilities from single radish (Raphanus sativus L.) and Chinese cabbage (Brassica rapa ssp. pekinensis) seeds. Horticulture, Environment, and Biotechnology, 2013,54(3):249-256.
doi: 10.1007/s13580-013-0023-0
[8] Zepeda-Bautista R, Hernandez-Aguilar C, Dominguez-Pacheco A, et al. Electromagnetic field and seed vigour of corn hybrids. International Agrophysics, 2010,24(3):329-332.
[9] 郝丽珍, 敖秀珠, 林维申. CO2激光对青椒种子活力影响的研究. 激光杂志, 1990(4):197-200.
[10] Yasmin J, Raju Ahmed M, Lohumi S, et al. Classification method for viability screening of naturally aged watermelon seeds using FT-NIR spectroscopy. Sensors, 2019,19(5):1190.
doi: 10.3390/s19051190
[11] Song L, Wang Q, Wang C Y, et al. Effect of γ-irradiation on rice seed vigor assessed by near-infrared spectroscopy. Journal of stored products research, 2015,62:46-51.
[12] Xia Y, Xu Y F, Li J B, et al. Recent advances in emerging techniques for non-destructive detection of seed viability:A review. Artificial Intelligence in Agriculture, 2019,1:35-47.
[13] 彭彦昆, 赵芳, 李龙, 等. 利用近红外光谱与PCA-SVM识别热损伤番茄种子. 农业工程学报, 2018,34(5):159-165.
[14] Gomes Junior F G. Aplicação da análise de imagens para avaliação da morfologia interna de sementes. Informativo Abrates, 2010,20(3):33-39.
[15] Zhao X G, Gao Y Y, Wang X, et al. Research on tomato seed vigor based on X-ray digital image//Optoelectronic Imaging and Multimedia Technology IV. Beijing:International Society for Optics and Photonics, 2016.
[16] Ferguson D, Turner J H. Influence of unfilled cotton seed upon emergence and vigor. Crop Science, 1971,11(5):713-715.
[17] Wang X M, Zheng H B, Tang Q Y, et al. Seed filling under different temperatures improves the seed vigor of hybrid rice (Oryza sativa L.) via starch accumulation and structure. Scientific Reports, 2020,10(1):1-9.
doi: 10.1038/s41598-019-56847-4 pmid: 31913322
[18] Swaminathan M S, Kamra S K. X-ray analysis of the anatomy and viability of seeds of some economic plants. Indian Journal of Genetics and Plant Breeding, 1961,4(2):129-135.
[19] Ogé L, Broyart C, Collet B, et al. Protein damage and repair controlling seed vigor and longevity//Clifton N J. Methods in Molecular Biology. Humana Press, 2011,773:369-384.
[20] Lombardo J A, McCarthy B C. Seed germination and seedling vigor of weevil-damaged acorns of red oak. Canadian Journal of Forest Research, 2009,39(8):1600-1605.
[21] Al-Turki T A, Baskin C C. Determination of seed viability of eight wild Saudi Arabian species by germination and X-ray tests. Saudi Journal of Biological Sciences, 2017,24(4):822-829.
doi: 10.1016/j.sjbs.2016.06.009 pmid: 28490953
[22] 杨冬风. 基于软X-射线造影和机器智能的玉米种子活力检测方法研究. 作物杂志, 2013(3):136-140.
[23] 苏争艳, 刘永庆, 谭金莲, 等. 辣椒种子结构与生活力关系的研究. 湖南农业大学报, 1996(2):139-142.
[24] 杨冬风, 尹淑欣, 姜丽, 等. 玉米种子活力近红外光谱智能检测方法研究. 核农学报, 2013,27(7):957-961.
[25] Qiu G J, Lü E L, Lu H Z, et al. Single-Kernel FT-NIR spectroscopy for detecting supersweet corn (Zea mays L. Saccharata Sturt) seed viability with multivariate data analysis. Sensors, 2018,18(4):1010.
doi: 10.3390/s18041010
[26] 时伟芳, 谢宗铭, 杨丽明, 等. 基于近红外光谱技术的春小麦单粒种子活力鉴定. 麦类作物学报, 2016,36(2):200-205.
[27] Kusumaningrum D, Lee H, Lohumi S, et al. Non-destructive technique for determining the viability of soybean (Glycine max) seeds using FT-NIR spectroscopy. Journal of the Science of Food and Agriculture, 2018,98(5):1734-1742.
doi: 10.1002/jsfa.8646 pmid: 28858390
[28] 阴佳鸿, 毛培胜, 黄莺, 等. 不同含水量劣变燕麦种子活力的近红外光谱分析. 红外, 2010,31(7):39-44.
[29] Men S, Yan L, Liu J X, et al. A classification method for seed viability assessment with infrared thermography. Sensors, 2017,17(4):845.
[30] Shrestha S, Deleuran L C, Gislum R. Separation of viable and non-viable tomato (Solanum lycopersicum L.) seeds using single seed near-infrared spectroscopy. Computers and Electronics in Agriculture, 2017,142:348-355.
doi: 10.1016/j.compag.2017.09.004
[31] 李武, 李妍, 李高科, 等. 高温老化下甜玉米种子活力近红外光谱检测技术研究. 核农学报, 2018,32(8):1611-1618.
[32] 宋乐, 王琦, 王纯阳, 等. 基于近红外光谱的单粒水稻种子活力快速无损检测. 粮食储藏, 2015,4(1):20-23.
[33] 尹淑欣, 杨冬风, 汪秀志, 等. 近红外光谱技术在玉米种子活力检测中的应用研究. 现代农业科技, 2015(13):20-21,23.
[34] 白京, 彭彦昆, 王文秀. 基于可见近红外光谱玉米种子活力的无损检测方法. 食品安全质量检测学报, 2016,7(11):4472-4477.
[35] Seo Y W, Ahn C K, Lee H, et al. Non-destructive sorting techniques for viable pepper (Capsicum annuum L.) seeds using Fourier transform near-infrared and Raman spectroscopy. Journal of Biosystems Engineering, 2016,41(1):51-59.
doi: 10.5307/JBE.2016.41.1.051
[36] 罗丽萍, 刘星星, 殷勤, 等. 利用近红外技术检测芸薹属种子活力. 南昌大学学报(理科版), 2017,41(1):66-71.
[37] 许思, 赵光武, 邓飞, 等. 基于高光谱的水稻种子活力无损分级检测. 种子, 2016,35(4):34-40.
[38] 尤佳, 李景彬, 黄勇, 等. 基于高光谱图像技术的脱绒棉种活力检测. 江苏农业科学, 2018,46(13):231-235.
[39] 彭彦昆, 赵芳, 白京, 等. 基于图谱特征的番茄种子活力检测与分级. 农业机械学报, 2018,49(2):327-333.
[40] 李美凌, 邓飞, 刘颖, 等. 基于高光谱图像的水稻种子活力检测技术研究. 浙江农业学报, 2015,27(1):1-6.
[41] Zhang T T, Wei W S, Zhao B, et al. A reliable methodology for determining seed viability by using hyperspectral data from two sides of wheat seeds. Sensors, 2018,18(3):813.
doi: 10.3390/s18030813
[42] Ambrose A, Kandpal L M, Kim M S, et al. High speed measurement of corn seed viability using hyperspectral imaging. Infrared Physics and Technology, 2016,75:173-179.
doi: 10.1016/j.infrared.2015.12.008
[43] Baek I, Kusumaningrum D, Kandpal L M, et al. Rapid measurement of soybean seed viability using kernel-based multispectral image analysis. Sensors, 2019,19(2):271.
doi: 10.3390/s19020271
[44] He X T, Feng X P, Sun D W, et al. Rapid and nondestructive measurement of rice seed vitality of different years using near-infrared hyperspectral imaging. Molecules, 2019,24(12):2227.
doi: 10.3390/molecules24122227
[45] Kandpal L M, Lohumi S, Kim M S, et al. Near-infrared hyperspectral imaging system coupled with multivariate methods to predict viability and vigor in muskmelon seeds. Sensors and Actuators B:Chemical, 2016,229:534-544.
doi: 10.1016/j.snb.2016.02.015
[46] Wakholi C, Kandpal L M, Lee H, et al. Rapid assessment of corn seed viability using short wave infrared line-scan hyperspectral imaging and chemometrics. Sensors and Actuators B:Chemical, 2018,255:498-507.
doi: 10.1016/j.snb.2017.08.036
[47] 李欢欢, 卢伟, 杜昌文, 等. 基于光声光谱结合LS-SVR的稻种活力快速无损检测方法研究. 中国激光, 2015,42(11):280-289.
[48] Pardo G P, Pacheco A D, Tomás S A, et al. Characterization of aged lettuce and chard seeds by photothermal techniques. International Journal of Thermophysics, 2018,39(10):118.
doi: 10.1007/s10765-018-2438-4
[49] Klein J D, Santosa I E, Laarhoven L J J, et al. Trace gas production for rapid non-destructive determination of seed viability. Acta Horticulturae, 2004,631:39-42.
[50] 贾良权, 祁亨年, 胡文军, 等. 采用TDLAS技术的玉米种子活力快速无损分级检测. 中国激光, 2019,46(9):297-305.
[51] 贾良权, 祁亨年, 赵光武, 等. 采用虚拟仪器的种子呼吸测量系统设计. 光电工程, 2019,46(11):76-83.
[52] 贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统. 光学精密工程, 2019,27(6):1397-1404.
[53] Klein J D, Wood L A, Geneve R L. Hydrogen peroxide and color sorting improves germination and vigor of eastern gamagrass (Tripsacum dactyloides) seeds. Acta Horticulturae, 2008,782:93-98.
[54] 胡伟凤, 王晓敏, 唐启源, 等. 不同分选方式对水稻种子活力的影响. 杂交水稻, 2018,33(4):58-63.
[55] 吴萍, 宋顺华, 张海军, 等. 精选和引发处理对萝卜种子质量的影响. 黑龙江农业科学, 2020(1):96-99.
[56] 许阳. 不同品种甜玉米种子活力特性差异比较及适宜精选方法的选择. 天津:天津农学院, 2018.
[1] 黄帆,李俊,刘磊,李志勇,李鸿雁,师文贵,解永凤. 人工老化对老芒麦醇溶蛋白遗传完整性的影响[J]. 作物杂志, 2019, (5): 52–56
[2] 李昊胜,李岩,吴承来,赵林茂,张春庆. 花后DA-6处理对玉米自交系郑58种子活力的影响[J]. 作物杂志, 2019, (1): 186–191
[3] 杨翠翠,李法德,李岩,吴承来,张春庆. 弧形电晕场处理对玉米种子活力及生理指标的影响[J]. 作物杂志, 2016, (6): 154–159
[4] 朱霞, 胡勇, 王晓丽, 等. 几种植物生长调节剂对决明种子萌发及幼苗生长的影响[J]. 作物杂志, 2010, (1): 46–48
[5] 华国栋, 李冠喜, 浦汉春, 等. 小麦种子活力的影响因素与控制及种子贮藏技术[J]. 作物杂志, 2009, (6): 89–91
[6] 卢柏山, 史亚兴, 王辉, 等. 主栽糯玉米品种种子活力测定研究[J]. 作物杂志, 2008, (3): 79–81
[7] 李宏, 朱占林, 李志刚, 等. 根茬腐解液对大豆种子活力的影响[J]. 作物杂志, 2006, (6): 53–53
[8] 陆美莲, 郑慧明. 理化处理促进冬瓜种子萌发[J]. 作物杂志, 2003, (6): 38–39
[9] 李云娟. 通辽地区花生高产栽培技术[J]. 作物杂志, 2002, (5): 24–25
[10] 吴文革. 南方水稻旱育秧死苗的原因及防治方法[J]. 作物杂志, 2000, (2): 30–31
[11] 寇立群, 刘俊屏, 王秀芬. 吉林省农科院种子检验介绍[J]. 作物杂志, 1997, (1): 11–12
[12] 邵桂花, 万超文, 李舒凡. 大豆萌发期耐盐生理初步研究[J]. 作物杂志, 1994, (6): 25–27
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!