作物杂志,2020, 第6期: 180188 doi: 10.16035/j.issn.1001-7283.2020.06.027
纪景纯1,2(), 刘建立1, 牛玉洁1,2, 宣可凡1,2, 蒋一飞1,2, 邓皓东1,3, 李晓鹏1()
Ji Jingchun1,2(), Liu Jianli1, Niu Yujie1,2, Xuan Kefan1,2, Jiang Yifei1,2, Deng Haodong1,3, Li Xiaopeng1()
摘要:
利用高光谱数据监测作物生长情况具有无损和高效的特点,是现代农业的发展方向。为了简化高光谱数据处理流程,直接利用原始的高光谱反射率完成从建模到估算作物生长参数的全过程,应用于作物长势的实时监测。本文利用偏最小二乘回归(partial least squares regression,PLSR)、支持向量回归(support vector regression,SVR)和前馈神经网络(feedforward neural network,FNN)3种方法,利用全波段高光谱数据分别对冬小麦多个关键生育期(拔节、孕穗、扬花和乳熟期)生长参数(地上部生物量、叶面积指数、全氮含量和叶绿素浓度)进行了估算。比较3种方法的建模及估测效果,发现对于建模集数据,SVR对上述生长参数4个生育期的估测结果R2均值为0.89~0.98,MAPE为1.70%~7.53%,对于验证集数据,R2均值为0.90~0.94,MAPE为4.04%~7.46%,拟合优度和估测精度均超过PLSR和FNN,是估算方法中利用全波段光谱反射率估测冬小麦生长参数的最佳方案。随着无人机载高光谱技术成熟,SVR方法能够用于处理航拍获取的大范围田间高光谱信息,简便快捷地进行建模与参数反演,实时反映作物生长状态。
[1] |
Li X C, Zhang Y J, Bao Y S, et al. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sensing, 2014,6(7):6221-6241.
doi: 10.3390/rs6076221 |
[2] | Jia M, Li W, Wang K K, et al. A newly developed method to extract the optimal hyperspectral feature for monitoring leaf biomass in wheat. Computers and Electronics in Agriculture, 2019,165(1):1-7. |
[3] |
Duan D D, Zhao C J, Li Z H, et al. Estimating total leaf nitrogen concentration in winter wheat by canopy hyperspectral data and nitrogen vertical distribution. Journal of Integrative Agriculture, 2019,18(7):1562-1570.
doi: 10.1016/S2095-3119(19)62686-9 |
[4] | Huang L S, Zhang H S, Ding W J, et al. Monitoring of wheat scab using the specific spectral index from ASD hyperspectral dataset. Journal of Spectroscopy, 2019: 9153195. |
[5] |
Bao Y D, Mi C X, Wu N, et al. Rapid classification of wheat grain varieties using hyperspectral imaging and chemometrics. Applied Sciences, 2019,9(19):4119-4135.
doi: 10.3390/app9194119 |
[6] | 田明璐, 班松涛, 常庆瑞, 等. 基于无人机成像光谱仪数据的棉花叶绿素含量反演. 农业机械学报, 2016,47(11):285-293. |
[7] | 梁栋, 杨勤英, 黄文江, 等. 基于小波变换与支持向量机回归的冬小麦叶面积指数估算. 红外与激光工程, 2015,44(1):335-340. |
[8] |
Curran P J, Dungan J L, Macler B A, et al. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sensing of Environment, 1992,39(2):153-166.
doi: 10.1016/0034-4257(92)90133-5 |
[9] |
Osborne S, Schepers J S, Schlemmer M. Using multi-spectral imagery to evaluate corn grown under nitrogen and drought stressed conditions. Journal of Plant Nutrition, 2004,27(11):1917-1929.
doi: 10.1081/PLN-200030042 |
[10] |
Thenkabail P S, Smith R B, De Pauw E. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 2000,71(2):158-182.
doi: 10.1016/S0034-4257(99)00067-X |
[11] | 陆国政, 李长春, 杨贵军, 等. 基于成像高光谱仪的大豆叶面积指数反演研究. 大豆科学, 2016,35(4):599-608. |
[12] |
Svante W, Sjöström M, Eriksson L. PLS-regression:a basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 2001,58(2):109-130.
doi: 10.1016/S0169-7439(01)00155-1 |
[13] |
Cherkassky V. The nature of statistical learning theory. IEEE Transactions on Neural Networks, 1997,8(6):1564.
doi: 10.1109/TNN.1997.641482 pmid: 18255760 |
[14] |
Hsu C W, Lin C J. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002,13(2):415-425.
doi: 10.1109/72.991427 pmid: 18244442 |
[15] |
Fulkerson B. Machine learning,neural and statistical classification. Technometrics, 1997,37(4):459-459.
doi: 10.1080/00401706.1995.10484383 |
[16] |
Cheng C M, Wei Y C, Xu J J, et al. Remote sensing estimation of chlorophyll a and suspended sediment concentration in turbid water based on spectral separation. Optik, 2013,124(24):6815-6819.
doi: 10.1016/j.ijleo.2013.05.078 |
[17] | 梁栋, 杨勤英, 黄文江, 等. 基于小波变换与支持向量机回归的冬小麦叶面积指数估算. 红外与激光工程, 2015,44(1):335-340. |
[18] | 贺佳, 刘冰峰, 郭燕, 等. 冬小麦生物量高光谱遥感监测模型研究. 植物营养与肥料学报, 2017,23(2):313-323. |
[19] | 贾学勤, 冯美臣, 杨武德, 等. 基于多植被指数组合的冬小麦地上干生物量高光谱估测. 生态学杂志, 2018,37(2):424-429. |
[1] | 裴宇峰, 栾怀海, 刘春燕, 等. 黑龙江省大豆蛋白质和油分含量与环境因素的相关分析[J]. 作物杂志, 2013, (2): 3741 |
|