作物杂志,2021, 第4期: 10–17 doi: 10.16035/j.issn.1001-7283.2021.04.002

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

燕麦属植物核糖体DNA染色体定位及45S rDNA的系统进化分析

王炳策1(), 刘晓娟1(), 程斌2, 任明见1, 徐如宏1, 张素勤1, 张立异2, 何方1()   

  1. 1贵州大学农学院/国家小麦改良中心贵州分中心,550025,贵州贵阳
    2贵州省农业科学院旱粮研究所,550006,贵州贵阳
  • 收稿日期:2020-08-05 修回日期:2021-04-25 出版日期:2021-08-15 发布日期:2021-08-13
  • 通讯作者: 何方
  • 作者简介:王炳策,主要从事小麦远缘材料的细胞学研究,E-mail:bingcew0721@163.com|刘晓娟为共同第一作者,主要从事小麦远缘材料的细胞学研究,E-mail:lxj831508@163.com
  • 基金资助:
    国家自然科学基金地区项目“利用Seq-BSA技术准确定位小麦新抗源贵协3号的抗条锈病基因”(31660393);贵州省基金重点项目“小麦抗源贵协3号抗条锈病基因YrGX3的精细定位”(黔科合基础[2019]450号);贵州省农业科学院青年科技基金“小麦贵协3号抗条锈病基因的细胞学定位分析”(黔农科院青年基金[2018]02号)

Chromosomal Localization of Ribosomal DNA and Phylogenetic Analysis of 45S rDNA in Avena

Wang Bingce1(), Liu Xiaojuan1(), Cheng Bin2, Ren Mingjian1, Xu Ruhong1, Zhang Suqin1, Zhang Liyi2, He Fang1()   

  1. 1College of Agriculture, Guizhou University/Guizhou Subcenter of National Wheat Improvement Center, Guiyang 550025, Guizhou, China
    2Institute of Upland Crops, Guizhou Academy of Agriculture Sciences, Guiyang 550006, Guizhou, China
  • Received:2020-08-05 Revised:2021-04-25 Online:2021-08-15 Published:2021-08-13
  • Contact: He Fang

摘要:

由于缺乏明确的二倍体供体信息,燕麦属植物的起源和系统进化关系一直存在争议。利用荧光原位杂交(fluorescence in situ hybridization,FISH)方法,检测45S rDNA和5S rDNA在燕麦属不同倍性植物染色体上的位点信息;并依据已公开的45S rDNA ITS区全长DNA序列构建分子进化树。探讨燕麦属植物在不同基因组中45S rDNA的位点变化、进化规律以及分化机制,为探究燕麦属物种的起源与演化提供参考。

关键词: 燕麦属, 45S rDNA, 荧光原位杂交, ITS

Abstract:

Due to the incomplete information on the diploid donor, the origin and phylogenetic relationship of oats have been controversial. The fluorescence in situ hybridization (FISH) method was used to detect the location information of 45S rDNA and 5S rDNA on the chromosomes of different ploidy plants of Avena. The molecular evolution tree was constructed based on the published full-length DNA sequence of the 45S rDNA ITS region. This paper discussed the locus changes, evolution laws, and differentiation mechanisms of 45S rDNA in different genomes of oats plants and provided references for exploring the origin and evolution of oat species.

Key words: Avena L., 45S rDNA, Fluorescence in situ hybridization, ITS

图1

燕麦有丝分裂染色体 a:偏凸燕麦;b:砂燕麦;c:裂稃燕麦;d:葡萄牙野燕麦;e:光稃野燕麦;f:栽培燕麦16Co2

表1

供试燕麦45S rDNA和5S rDNA信号信息

物种
Species
基因组
Genome
染色体数目
Chromosome
number
位点
Signal
位点数目
Number of signals
信号分布区域
Signal region
信号强弱
Signal lightness
砂燕麦
A. strigosa
AsAs 2n=2x=14 45S 4 染色体端部 较强
5S 4 1对位于染色体端部,1对位于染色体中部 较弱
偏凸燕麦
A. ventricosa
CvCv 2n=2x=14 45S 6 2对位于染色体端部,1对位于染色体中部 较弱
5S 2 染色体中部 较弱
裂稃燕麦
A. barbata
AABB 2n=4x=28 45S 4 染色体端部 1强1弱
5S 6 1对位于染色体端部,2对位于染色体中部 较弱
葡萄牙野燕麦
A. fatua var. portugal
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
光稃野燕麦
A. fatua var. glabrata
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
栽培燕麦16Co1
A. sativa 16Co1
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱
栽培燕麦16Co2
A. sativa 16Co2
AACCDD 2n=6x=42 45S 6 染色体端部 较强
5S 6 2对位于染色体端部,1对位于染色体中部 较弱

图2

燕麦有丝分裂染色体45S rDNA和5S rDNA FISH鉴定 a:砂燕麦;b:偏凸燕麦;c:裂稃燕麦;d:光稃野燕麦;e:栽培燕麦16Co1;f:栽培燕麦16Co2

表2

公开的含45S rDNA ITS区DNA序列全长的燕麦属物种

物种Species 基因组Genome 染色体数目Chromosome number 序列数Sequence number 序列名Sequence name
加那利燕麦A. canariensis AcAc 2n=2x=14 5 can1 Ac-can5 Ac
大马士革燕麦A. damascena AdAd 2n=2x=14 9 dam1 Ad-dam9 Ad
长颖燕麦A. longiglumis AlAl 2n=2x=14 6 lon1 Al-lon6 Al
砂燕麦A. strigosa AsAs 2n=2x=14 3 str1 As-str3 As
沙漠燕麦A. wiestii AsAs 2n=2x=14 9 wie1 As-wie9 As
大西洋燕麦A. atlantica AsAs 2n=2x=14 6 atl1 As-atl6 As
A. hirtula AsAs 2n=2x=14 6 hir1 As-hir6 As
A. lusitanica AsAs 2n=2x=14 4 lus1 As-lus4 As
短燕麦A. brevis AsAs 2n=2x=14 3 bre1 nA-sbre3 As
A. hispanica AsAs 2n=2x=14 4 his1 As-his4 As
异颖燕麦A. eriantha CpCp 2n=2x=14 9 eri1 Cp-eri9 Cp
物种Species 基因组Genome 染色体数目Chromosome number 序列数Sequence number 序列名Sequence name
不完全燕麦A. clauda CpCp 2n=2x=14 9 cla1 Cp-cla9 Cp
A. pilosa CpCp 2n=2x=14 1 pil1 Cp
偏凸燕麦A. ventricosa CvCv 2n=2x=14 5 ven1 Cv-ven5 Cv
裂稃燕麦A. barbata AABB 2n=4x=28 16 bar1 AB-bar16 AB
阿比西尼亚燕麦A. abyssinica AABB 2n=4x=28 9 aby1 AB-aby9 AB
A. agadiriana AABB 2n=4x=28 7 aga1 AB-aga7 AB
瓦维洛夫燕麦A. vaviloviana AABB 2n=4x=28 7 vav1 AB-vav7 AB
岛屿燕麦A. insularis AACC 2n=4x=28 4 ins1 AC-ins4 AC
大燕麦A. maroccana AACC 2n=4x=28 9 mar1 AC-mar9 AC
墨菲燕麦A. murphyi AACC 2n=4x=28 6 mur1 AC-mur6 AC
大穗燕麦A. macrostachya CmCmCmCm 2n=4x=28 10 mac1 CmCm-mac10 CmCm
野燕麦A. fatua AACCDD 2n=6x=42 21 fat1 ACD-fat21 ACD
普通栽培燕麦A. sativa AACCDD 2n=6x=42 16 sat1 ACD-sat16 ACD
野红燕麦A. sterilis AACCDD 2n=6x=42 11 ste1 ACD-ste11 ACD
A. occidentalis AACCDD 2n=6x=42 12 occ1 ACD-occ12 ACD
大粒裸燕麦A. nuda AACCDD 2n=6x=42 6 nud1 ACD-nud6 ACD
地中海燕麦A. byzantina AACCDD 2n=6x=42 1 byz1 ACD

图3

燕麦属植物与小麦45S rDNA序列系统进化树

[1] 李威, 周青平. 六种裸燕麦品种种子萌发期抗旱性的研究. 草业与畜牧, 2008,5(9):5-8.
[2] 彭远英, 颜红海, 郭来春, 等. 燕麦属不同倍性种质资源抗旱性状评价及筛选. 生态学报, 2011,31(9):134-147.
[3] 李英丽, 方正, 毛明艳. 不同燕麦品种耐碱性筛选和鉴定. 河北农业大学学报, 2014,37(6):13-17.
[4] 董玉琛, 刘旭总. 中国作物及其野生近缘植物:粮食作物卷. 北京: 中国农业出版社, 2006.
[5] Drossou A, Katsiotis A, Leggett J M, et al. Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theoretical and Applied Genetics, 2004,109(1):48-54.
[6] Badaeva E D, Loskutov I G, Shelukhina O Y, et al. Cytogenetic analysis of diploid Avena L. species containing the as genome. Russian Journal of Genetics, 2005,41(12):1428-1433.
[7] Rodionov A V, Tyupa N B, Kim E S, et al. Genomic configuration of the autotetraploid oat species avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences:on the oat karyotype evolution during the early events of the Avena species divergence. Russian Journal of Genetics, 2005,41(5):518-528.
[8] Loskutov I G. On evolutionary pathways of Avena species. Genetic Resources and Crop Evolution, 2008,55(2):211-220.
[9] Nikoloudakis N, Skaracis G, Katsiotis A. Evolutionary insights inferred by molecular analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. sequences. Molecular Phylogenetics and Evolution, 2008,46(1):102-115.
[10] 刘青, 刘欢, 林磊. 燕麦属系统学研究进展. 热带亚热带植物学报, 2014(5):516-524.
[11] 龚志云, 吴信淦, 程祝宽, 等. 水稻45S rDNA和5S rDNA的染色体定位研究. 遗传学报, 2002,29(3):241-244.
[12] Pontes O, Cotrim H, Pais S, et al. Physical mapping,expression patterns and interphase organisation of rDNA loci in Portuguese endemic Silene cintrana and Silene rothmaleri. Chromosome Research, 2000,8(4):313-317.
[13] Kato A, Lamb J C, Birchler J A. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proceedings of the National Academy of Sciences, 2004,101(37):13554-13559.
[14] Mahelka V, Kopecký D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Molecular Biology and Evolution, 2013,30(9):2065-2086.
[15] Clegg M T, Zurawski G. Chloroplast DNA and the study of plant phylogeny:present status and future prospects//Soltis P S,Soltis D E,Doyle J J. Molecular Systematics of Plants. Springer:Boston,MA, 1992.
[16] Peng Y Y, Wei Y M, Baum B R, et al. Molecular diversity of the 5S rRNA gene and genomic relationships in the genus Avena (Poaceae:Aveneae). Genome, 2008,51(2):137-154.
[17] Yan H H, Baum B R, Zhou P P, et al. Phylogenetic analysis of the genus Avena based on chloroplast intergenic spacer psb A-trn H and single-copy nuclear gene Acc1. Genome, 2014,57(5):267-277.
[18] Fu Y B. Oat evolution revealed in the maternal lineages of 25 Avena species. Scientific Reports, 2018,8(1):1-12.
[19] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X Windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997,25(24):4876-4882.
[20] Kumar S, Stecher G, Li M, et al. MEGA X:Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 2018,35(6):1547-1549.
[21] Linc G, Gaál E, Molnár I, et al. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE, 2017,12(3):e0173623.
[22] Mahelka V, Kopecký D, Baum B R. Contrasting patterns of evolution of 45S and 5S rDNA families uncover new aspects in the genome constitution of the agronomically important grass Thinopyrum intermedium (Triticeae). Molecular Biology and Evolution, 2013,30(9):2065-2086.
[23] 赵筱芳. 冰草居群45S rDNA基因位点FISH分析. 成都:四川农业大学, 2016.
[24] Choi H W, Koo D H, Bang K H, et al. FISH and GISH analysis of the genomic relationships among Panax species. Genes and Genomics, 2009,31(1):99-105.
[25] 符文炎, 刘义飞, 黄宏文. 荧光原位杂交技术在植物多倍体起源与进化研究中的应用. 热带亚热带植物学报, 2014,22(3):314-322.
[26] Manns U, Anderberg A A. Molecular phylogeny of Anagallis (Myrsinaceae) based on ITS, trn L-F,and ndh F sequence data. International Journal of Plant Sciences, 2005,166(6):1019-1028.
[27] Gillespie L J, Soreng R J, Bull R D, et al. Phylogenetic relationships in subtribe Poinae (Poaceae,Poeae) based on nuclear ITS and plastid trn T-trn L-trn F sequences. Botany, 2008,86(8):938-967.
[28] Attar F, Riahi M, Daemi F, et al. Preliminary molecular phylogeny of Eurasian Scrophularia (Scrophulariaceae) based on DNA sequence data from trnS-trnG and ITS regions. Plant Biosystems, 2011,145(4):857-865.
[1] 韩兴,何运转,康占海,王高杨,王冰,李亚宁,刘大群. 掌叶半夏茎基腐病病原鉴定及其防治药剂筛选[J]. 作物杂志, 2019, (6): 177–181
[2] 李凤兰, 蒋先锋, 史丽娟, 等. 两株马铃薯干腐病病原菌的分离和鉴定[J]. 作物杂志, 2013, (4): 125–128
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!