作物杂志,2023, 第3期: 238–245 doi: 10.16035/j.issn.1001-7283.2023.03.033

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

氮磷钾配施对植烟土壤速效养分和真菌多样性的影响

李航1(), 苏梦迪1, 黄浪平1, 马啸2, 王欢欢1, 敖飞2, 胡丽涛2(), 张松涛1()   

  1. 1河南农业大学烟草学院/烟草行业烟草栽培重点实验室,450002,河南郑州
    2中国烟草总公司重庆市公司丰都分公司,408200,重庆
  • 收稿日期:2022-08-01 修回日期:2022-08-30 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 胡丽涛,主要从事烟草栽培生理研究,E-mail:284186958@qq.com;张松涛为共同通信作者,主要从事烟草生理生化研究,E-mail:zhangsongzi@163.com
  • 作者简介:李航,主要从事烟草栽培生理研究,E-mail:852540460@qq.com

Effects of Nitrogen, Phosphorus and Potassium Application on Available Nutrients and Fungal Diversity in Tobacco-Growing Soil

Li Hang1(), Su Mengdi1, Huang Langping1, Ma Xiao2, Wang Huanhuan1, Ao Fei2, Hu Litao2(), Zhang Songtao1()   

  1. 1College of Tobacco Science, Henan Agricultural University/Key Laboratory of Tobacco Cultivation in Tobacco Industry, Zhengzhou 450002, Henan, China
    2Fengdu Branch of Chongqing, National Tobacco Corporation, Chongqing 408200, China
  • Received:2022-08-01 Revised:2022-08-30 Online:2023-06-15 Published:2023-06-16

摘要:

氮磷钾肥可通过改变土壤养分影响烟叶质量,然而其对植烟土壤真菌多样性的影响尚不清晰。设置CK(不施肥)、NPK、PK、NK和NP处理,通过高通量测序和RDA方法对植烟土壤速效养分及其与土壤真菌多样性之间的关系进行分析,为通过土壤速效养分调控真菌多样性提供理论依据。结果表明,不同施肥处理对速效养分影响不同,移栽后30和60d施肥处理显著降低了土壤的pH。施肥处理降低了真菌的多样性(移栽后30d)和丰富度(移栽后60d),在门水平上,施肥处理通过改变担子菌门(Basidiomycota)、子囊菌门(Ascomycota)、接合菌门(Zygomycota)和壶菌门(Chytridiomycota)的相对丰度影响真菌群落结构;在属水平上,移栽后30d施肥处理增加了木霉属(Trichoderma)和青霉属(Penicillium)的相对丰度(PK处理除外),移栽后90d施肥处理降低了镰刀菌属(Fusarium)的相对丰度。土壤速效养分和pH对真菌群落组成影响显著,其中速效磷和碱解氮是主要影响因子。

关键词: 氮磷钾配施, 植烟土壤, 速效养分, 真菌多样性

Abstract:

Nitrogen, phosphorus and potassium fertilizer affect tobacco leaf quality by changing soil nutrients, but the mechanism of its effect on fungal diversity in tobacco-growing soil is unclear. Five treatments were set in the field experiment, CK (no fertilization), NPK, PK, NK and NP. We adopted high-throughput sequencing method and redundancy analysis to analyze the relationships between soil available nutrients and fungal diversity for providing a theoretical basis of regulating fungal diversity through soil available nutrients. The results showed that NPK, PK, NK and NP treatments had different effects on available nutrients and significantly decreased soil pH at 30 and 60d after transplanting. NPK, PK, NK and NP treatments decreased fungal diversity (30d after transplanting) and richness (60d after transplanting). At the phylum level, NPK, PK, NK and NP treatments altered fungal community structure by changing the relative abundances of Basidiomycota, Ascomycota, Zygomycota, and Chytridiomycota. At the genus level, NPK, PK, NK and NP treatments increased the relative abundances of Trichoderma and Penicillium at 30d after transplanting (except PK treatment), while decreased the relative abundance of Fusarium at 90d after transplanting. Soil available nutrients and pH had significant effects on fungal community composition, among which available phosphorus and alkali-hydrolyzable nitrogen were the main influencing factors.

Key words: Application of NPK, Tobacco-growing soil, Available nutrients, Fungal diversity

表1

不同施肥处理肥料用量

处理
Treatment
硝酸铵
Ammonium nitrate
重过磷酸钙
Superphosphate
硫酸钾
Potassium sulfate
NPK 317.14 245.93 749.10
PK 0.00 245.93 749.10
NK 317.14 0.00 749.10
NP 317.14 245.93 0.00
CK 0.00 0.00 0.00

表2

不同施肥处理对土壤速效养分的影响

取样时间
Sampling time
处理
Treatment
碱解氮
Alkali-hydrolyzable N (mg/kg)
速效磷
Available P (mg/kg)
速效钾
Available K (mg/kg)
pH
移栽后30d
30d after transplanting
NPK 130.68±4.23b 52.59±4.73b 418.16±37.31b 4.59±0.03b
PK 139.65±7.09ab 66.75±1.79a 719.64±43.14a 4.92±0.18ab
NK 153.06±14.77a 49.81±2.32b 454.23±42.78b 4.82±0.11ab
NP 142.89±2.50ab 53.09±3.22b 364.05±54.66b 4.75±0.21ab
CK 130.44±3.64b 48.54±2.63b 418.16±36.64b 5.10±0.37a
移栽后60d
60d after transplanting
NPK 157.82±1.22a 57.39±5.72b 789.20±38.61a 4.61±0.18abc
PK 135.33±11.17b 58.40±7.15ab 766.01±54.66a 4.86±0.09ab
NK 135.94±9.27b 49.30±2.68b 657.79±31.41a 4.53±0.19c
NP 135.04±0.20b 69.02±7.87a 376.93±32.18b 4.57±0.11bc
CK 158.71±9.04a 51.32±4.64b 402.70±30.92b 4.94±0.21a
移栽后90d
90d after transplanting
NPK 139.76±4.08a 49.80±2.86a 675.82±21.88a 4.88±0.07a
PK 142.04±5.22a 55.37±7.15a 665.52±21.86a 4.93±0.19a
NK 144.89±3.50a 48.09±6.88a 441.35±32.80b 4.90±0.20a
NP 144.06±0.81a 55.87±5.77a 433.62±20.65b 4.93±0.02a
CK 137.30±4.27a 50.06±3.93a 379.51±10.93b 5.09±0.20a

图1

物种累积曲线

表3

不同施肥处理真菌群落α指数

取样时间
Sampling time
处理
Treatment
Chao1指数
Chao1 index
覆盖率
Percentage of coverage
香农指数
Shannon index
观察到的物种数
Number of observed species
辛普森指数
Simpson index
移栽后30d
30d after transplanting
NPK 786.40±116.68a 0.9970a 4.32±0.20a 639.03±92.41a 0.88±0.04ab
PK 914.06±38.12a 0.9970a 4.84±0.14a 777.23±71.76a 0.88±0.04ab
NK 796.97±36.16a 0.9966a 3.95±0.27b 606.97±67.69a 0.82±0.07b
NP 848.07±183.73a 0.9968a 4.73±0.71a 694.23±160.23a 0.90±0.04ab
CK 826.68±51.42a 0.9972a 5.19±0.83a 694.07±87.61a 0.93±0.04a
移栽后60d
60d after transplanting
NPK 1014.44±188.14a 0.9958b 4.10±0.29a 790.67±160.36a 0.82±0.05a
PK 777.62±62.94b 0.9970a 3.94±1.01a 635.00±120.79a 0.81±0.10a
NK 889.93±94.58ab 0.9961ab 4.15±0.57a 683.00±43.65a 0.84±0.07a
NP 875.76±148.95ab 0.9965ab 3.95±1.38a 662.70±212.53a 0.80±0.11a
CK 1075.49±33.92a 0.9955b 4.32±0.38a 828.67±6.67a 0.82±0.04a
移栽后90d
90d after transplanting
NPK 1056.26±98.38a 0.9956b 4.25±0.52a 806.57±115.87a 0.83±0.05a
PK 1130.52±232.34a 0.9965a 5.08±1.43a 953.40±285.68a 0.86±0.09a
NK 999.44±95.38a 0.9961ab 4.00±0.31a 790.97±102.15a 0.79±0.02a
NP 1040.94±143.50a 0.9957ab 4.19±1.32a 810.23±180.68a 0.76±0.19a
CK 1104.55±84.91a 0.9961ab 4.97±0.61a 893.53±73.02a 0.86±0.04a

图2

不同施肥处理对土壤真菌OTU影响的韦恩图

图3

不同处理真菌门水平物种相对丰度(a)和前4位优势菌门相对丰度(b)

图4

不同处理真菌属水平物种相对丰度(a)和前3位、第6位优势菌属相对丰度(b)

图5

土壤真菌优势门和优势属相对丰度与土壤理化因子的RDA分析

[1] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 2017, 15 (10):579-590.
doi: 10.1038/nrmicro.2017.87 pmid: 28824177
[2] 朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康. 中国科学:生命科学, 2021, 51(1):1-11.
[3] 高芬, 闫欢, 王梦亮, 等. 土壤微生物菌群变化对土传病害的影响及生物调控. 中国农学通报, 2020, 36(13):160-164.
doi: 10.11924/j.issn.1000-6850.casb19010085
[4] 黄新琦, 蔡祖聪. 土壤微生物与作物土传病害控制. 中国科学院院刊, 2017, 32(6):593-600.
[5] 黄龙, 包维楷, 李芳兰, 等. 土壤结构和植被对土壤微生物群落的影响. 应用与环境生物学报, 2021, 27(6):1725-1731.
[6] 汤玉洁, 刘俊萍, 储国林, 等. 不同薄壳山核桃品种的根际土壤真菌群落结构研究. 河南农业大学学报, 2022, 56(4):622- 633.
[7] 黄桥明. 马尾松林恢复过程中微生物来源土壤有机质的贡献及其影响因素. 福州:福建师范大学, 2020.
[8] 马利平. 生物有机肥替代化肥减施对大豆土壤微生物多样性的影响. 哈尔滨:黑龙江大学, 2019.
[9] 翁泽斌. 不同施钾水平对烟草根际微生物生态及烟草生长的影响. 福州:福建农林大学, 2017.
[10] 张润芝. 氮肥调控玉米/大豆间作生产力及养分吸收和土壤微生物作用机理的研究. 哈尔滨:东北农业大学, 2020.
[11] 马垒, 赵文慧, 郭志彬, 等. 长期不同磷肥施用量对砂姜黑土真菌多样性、群落组成和种间关系的影响. 生态学报, 2019, 39(11):4158-4167.
[12] 白岚方. 施氮水平对青贮玉米根系空间微生物组成及氮素利用影响机制的研究. 呼和浩特:内蒙古大学, 2021.
[13] Allison S D, Hanson C A, Treseder K K. Nitrogen fertilization reduces diversity and alters community structure of active fungi in boreal ecosystems. Soil Biology and Biochemistry, 2007, 39 (8):1878-1887.
doi: 10.1016/j.soilbio.2007.02.001
[14] Rousk J, Bååth E, Brookes P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal, 2010, 4(10):1340-1351.
doi: 10.1038/ismej.2010.58
[15] Lauber C L, Hamady M, Knight R, et al. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, 2009, 75(15):5111-5120.
doi: 10.1128/AEM.00335-09 pmid: 19502440
[16] Jorquera M A, Martínez O A, Marileo L G, et al. Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two chilean andisol pastures. World Journal of Microbiology and Biotechnology, 2014, 30(1):99-107.
doi: 10.1007/s11274-013-1427-9 pmid: 23842756
[17] Lin X G, Feng Y Z, Zhang H Y, et al. Long-term balanced fertilization decreases arbuscular mycorrhizal fungal diversity in an arable soil in North China revealed by 454 pyrosequencing. Environmental Science and Technology, 2012, 46(11):5764- 5771.
doi: 10.1021/es3001695 pmid: 22582875
[18] 周晶. 长期施氮对东北黑土微生物及主要氮循环菌群的影响. 北京: 中国农业大学, 2017.
[19] 江西省烟叶科学研究所. 一种田间试验土壤取样方法:CN103245527A. 北京: 中华人民共和国国家知识产权局, 2013.
[20] 鲍士旦. 土壤农化分析. 北京: 中国农业出版社, 2000.
[21] Li S, Deng Y, Wang Z, et al. Exploring the accuracy of amplicon- based internal transcribed spacer markers for a fungal community. Molecular Ecology Resources, 2019, 20(1):170-184.
doi: 10.1111/men.v20.1
[22] Caporaso J G, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nature Methods, 2010, 7(5):335-336.
doi: 10.1038/nmeth.f.303 pmid: 20383131
[23] Lobo. Basic local alignment search tool (blast). Journal of Molecular Biology, 2008, 215(3):403-410.
doi: 10.1016/S0022-2836(05)80360-2
[24] 李铭杰, 周志杰, 邢礼军, 等. 北苍术根区土壤中AM真菌多样性及其与土壤养分相关性分析. 中国生物防治学报, 2021, 37(6):1288-1297.
doi: 10.16409/j.cnki.2095-039x.2021.06.019
[25] 朱芙蓉, 周浓, 杨敏, 等. 不同丛枝菌根真菌对滇重楼幼苗根际土壤养分的影响. 中国实验方剂学杂志, 2020, 26(22):86- 95.
[26] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands. Science, 2010, 327(5968):1008-1010.
doi: 10.1126/science.1182570 pmid: 20150447
[27] 郑梅迎. 模拟酸雨和施氮对遵义植烟土壤酸化效应研究. 北京: 中国农业科学院, 2020.
[28] Sarah J K, David W, Keith W T G, et al. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 2005, 38(5):898-911.
doi: 10.1016/j.soilbio.2005.08.006
[29] Ning Q, Chen L, Jia Z J, et al. Multiple long-term observations reveal a strategy for soil pH-dependent fertilization and fungal communities in support of agricultural production. Agriculture,Ecosystems and Environment, 2019, 293(C):106837.
doi: 10.1016/j.agee.2020.106837
[30] 张宇亭. 长期施肥对土壤微生物多样性和抗生素抗性基因累积的影响. 重庆:西南大学, 2017.
[31] 刘东海, 张学江, 王鹏, 等. 不同施肥处理对小麦根际土壤真菌多样性及根腐病的影响. 湖北农业科学, 2020, 59(21):30-34,50.
[32] Lundell T K, Makela M R, Hilden K. Lignin-modifying enzymes in filamentous basidiomycetes: Ecological, functional and phylogenetic review. Journal of Basic Microbiology, 2010, 50 (1):5-20.
doi: 10.1002/jobm.200900338 pmid: 20175122
[33] 谭仲廷, 李安定, 杨瑞, 等. 百香果连作对土壤真菌群落结构的影响. 分子植物育种, 2022, 20(4):1373-1382.
[34] Xiong J B, Peng F, Sun H B, et al. Divergent responses of soil fungi functional groups to short-term warming. Microbial Ecology, 2014, 68(4):708-715.
doi: 10.1007/s00248-014-0385-6 pmid: 24553914
[35] 冯万艳, 赵燕珍, 谭健晖, 等. 马尾松与粘盖乳牛肝菌菌根共生体形成过程. 菌物学报, 2019, 38(10):1620-1630.
[36] 杨祝良. 中国鹅膏属真菌资源. 中国菌物学会第三届会员代表大会暨全国第六届菌物学学术讨论会论文集. 北京: 中国菌物学会, 2003:466.
[37] Junsheng H, Bin H, Kaibin Q, et al. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation. European Journal of Soil Biology, 2016, 72(3):35-41.
doi: 10.1016/j.ejsobi.2015.12.007
[38] Kivlin S N, Hawkes C V. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests. Environmental Microbiology, 2016, 18 (12):4662-4673.
doi: 10.1111/1462-2920.13342 pmid: 27130750
[39] 邓娇娇, 周永斌, 殷有, 等. 辽东山区两种针叶人工林土壤真菌群落结构特征. 北京林业大学学报, 2019, 41(9):130-138.
[40] Liu S, Wang Z Y, Niu J F, et al. Changes in physicochemical properties, enzymatic activities, and the microbial community of soil significantly influence the continuous cropping of Panax quinquefolius L. (American ginseng). Plant and Soil, 2021, 463(6):427-446.
doi: 10.1007/s11104-021-04911-2
[41] 魏帛轩. 氮磷钾不同施肥组合对大豆连作土壤养分及土壤微生物群落的影响. 延边:延边大学, 2021.
[42] Wang J, Shi X, Zheng C, et al. Different responses of soil bacterial and fungal communities to nitrogen deposition in a subtropical forest. Science of the Total Environment, 2020, 755:142449.
doi: 10.1016/j.scitotenv.2020.142449
[43] Beauregard M S, Hamel C, Atul-Nayyar, et al. Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microbial Ecology, 2010, 59(2):379-389.
doi: 10.1007/s00248-009-9583-z pmid: 19756847
[44] Liu Z F, Fu B J, Zheng X X, et al. Plant biomass, soil water content and soil N: P ratio regulating soil microbial functional diversity in a temperate steppe: A regional scale study. Soil Biology and Biochemistry, 2009, 42(3):445-450.
doi: 10.1016/j.soilbio.2009.11.027
[45] 袁玲, 方德华, 汪智慧, 等. 钾对外生菌根真菌的分泌作用及氮、磷、钾含量的影响. 生态学报, 2001, 21(2):254-258.
[46] 潘争艳, 傅俊范, 马亮, 等. 辽宁省药用植物根际土壤木霉属真菌的多样性. 浙江大学学报(农业与生命科学版), 2010, 36(4):405-410.
[47] Soltani J, Hosseyni M M S. Fungal endophyte diversity and bioactivity in the Mediterranean cypress Cupressus sempervirens. Current Microbiology, 2015, 70(4):580-586.
doi: 10.1007/s00284-014-0753-y pmid: 25527365
[48] 张向民. 镰刀菌属分类学研究历史与现状. 菌物研究, 2005, 3(2):59-62.
[49] 王长庭, 王根绪, 刘伟, 等. 施肥梯度对高寒草甸群落结构、功能和土壤质量的影响. 生态学报, 2013, 33(10):3103-3113.
[50] 王丽霞, 郭宏宇, 霍玉珠, 等. 增温和增氮对天津滨海湿地芦苇凋落物分解微生物群落组成和多样性的影响. 天津师范大学学报(自然科学版), 2022, 42(1):37-44.
[51] 陈小均, 燕嗣皇, 吴石平. 氮磷钾肥对木霉菌丝生长和产孢的影响. 贵州农业科学, 2005, 33(2):34-35.
[52] 杨金燕, 姜于兰, 杨亚曦, 等. 腐质霉属真菌分类的研究进展. 贵州农业科学, 2015, 43(8):126-130.
[1] 孙奕荷, 张凯, 鲁琪飞, 李松伟, 张波, 李均, 叶协锋, 姚鹏伟, 李雪利. 三个典型植烟生态区土壤养分适宜性评价[J]. 作物杂志, 2023, (1): 115–121
[2] 王媛, 王继明, 年夫照, 郑元仙, 许银莲, 李翠芬, 崔涌泉, 张奇福, 赵磊峰, 廖小琳, 何元胜. 连季增施稻壳生物炭对植烟土壤理化性质及烤烟生长的影响[J]. 作物杂志, 2023, (1): 219–225
[3] 李龙, 肖让, 张永玲. 氮磷钾配施对制种玉米产量及经济效益的影响[J]. 作物杂志, 2022, (5): 111–117
[4] 杨营月, 刘慧, 王龙飞, 赵喆, 冯小虎, 来苗, 赵铭钦. 不同肥料类型对植烟土壤及烤烟品质的影响研究[J]. 作物杂志, 2022, (3): 187–193
[5] 谭智勇, 谌潇雄, 刘杰, 谭大新, 白彬, 周兴华, 赵辉. 贵州省铜仁市植烟土壤主要养分空间变异特征分析[J]. 作物杂志, 2022, (2): 189–194
[6] 孟凡, 罗建新, 蔡叶, 余颖, 杨磊, 周万春. 土壤速效磷对烟草生长发育及干物质积累与分配的影响[J]. 作物杂志, 2022, (2): 203–210
[7] 李茂森, 高卫锴, 任天宝, 蒋石香, 何小亚, 骆乐琴, 云菲, 柯晓婷. 遵义烟区不同海拔下植烟土壤细菌群落及影响因素分析[J]. 作物杂志, 2021, (6): 193–198
[8] 张芸萍, 郭山虎, 张锦涛, 解燕, 易克, 李强. 曲靖烟区烟叶微量元素与土壤pH值关系研究[J]. 作物杂志, 2021, (2): 178–182
[9] 龙素霞,李芳芳,石书亚,赵颖佳,肖凯. 氮磷钾配施对小麦植株养分吸收利用和产量的影响[J]. 作物杂志, 2018, (6): 96–102
[10] 黄刘亚,孙永波,刘书武,张永辉,年夫照,顾勇. 生物炭对植烟土壤主要性状和烤烟产质量影响的研究进展[J]. 作物杂志, 2017, (4): 15–20
[11] 焦占力, 杨英良, 王桂英, 等. 易涝地玉米三深带状耕作法[J]. 作物杂志, 1996, (5): 37–37
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!