作物杂志,2016, 第2期: 32–38 doi: 10.16035/j.issn.1001-7283.2016.02.006

• 遗传育种·种质资源·生物科技 • 上一篇    下一篇

黄土高原不同年代旱地冬小麦品种产量及光合特性对密度的响应

孙婴婴1,2,燕晓娟2,张岁岐2,3,王楠2,韩霁昌1   

  1. 1 陕西地建土地工程技术研究院有限责任公司/国土资源部退化及未利用土地整治工程重点实验室,710075,陕西西安
    2 西北农林科技大学黄土高原土壤侵蚀与旱地农业国家重点实验室,712100,陕西杨凌
    3 中国科学院水利部水土保持研究所,712100,陕西杨凌
  • 收稿日期:2015-10-19 修回日期:2016-02-18 出版日期:2016-04-15 发布日期:2018-08-26
  • 通讯作者: 张岁岐
  • 作者简介:孙婴婴,博士,主要从事作物水分生理生态研究
  • 基金资助:
    国家科技支撑计划项目(2015BAD22B01);国土资源部公益性行业科研专项(201411008);国家自然科学基金项目(31500320)

Responses of Yield and Photosynthesis Characteristics to Density of Dryland Winter Wheat Cultivated from Different Decades on the Loess Plateau

Sun Yingying1,2,Yan Xiaojuan2,Zhang Suiqi2,3,Wang Nan2,Han Jichang1   

  1. 1 Shaanxi Land Engineering & Technology Institute Company Limited/Key Laboratory of Degraded and Unused Land Consolidation Engineering,Xi’an 710075,Shaanxi,China;
    2 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Northwest A&F University,Yangling 712100,Shaanxi,China;
    3 Institute of Soil and Water Conservation,Chinese Academy of Sciences,Yangling 712100,Shaanxi,China
  • Received:2015-10-19 Revised:2016-02-18 Online:2016-04-15 Published:2018-08-26
  • Contact: Suiqi Zhang

摘要:

为研究旱地冬小麦品种更替过程中产量与光合特征对群体大小的响应,选择1940-2004年先后培育的7个冬小麦品种,于2011-2012年在陕西长武农业生态试验站进行田间试验,并设置3个播种密度(100、250、350粒/m 2)。在所有密度处理中,子粒产量均随着品种的更替而呈线性增长,年均遗传增益在0.65%到1.29%之间。1980年后培育的小麦品种的产量对于播种密度更不敏感,具备更好的群体调节能力。现代品种收获指数和千粒重的提高与其产量的提升呈显著正相关。品种更替过程中花期旗叶净光合速率和叶面积指数持续增长,并提高千粒重,最终增加产量。花期时冠层下可见天空比随着品种更替呈显著下降趋势。在黄土高原的冬小麦育种工作中,应将耐密性、大库容、高光效的理想株型作为重要的筛选指标。

关键词: 旱地小麦, 遗传增益, 群体大小, 光利用能力

Abstract:

An experiment was conducted to verify how the grain yield and associated photosynthesis characteristics of wheat responded to density with cultivar replacement. Seven wheat cultivars released from 1940 to 2004 were once widely grown on the Loess Plateau during the 2011-2012 growing season at the Changwu experimental station in China,using three densities (100,250,and 350 seeds/m 2). The grain yield increased linearly with cultivar development at all densities,with annual genetic gains ranged from 0.65% to 1.29%. The cultivars released after the 1980s were less sensitive to density and had better population regulation. The improvement in the harvest index and thousand-grain weight of the modern cultivars were significantly and positively correlated with the grain yield. The photosynthetic rate of the flag leaf and the leaf area index at anthesis stage consistently increased with cultivar replacement,contributing more to the thousand-grain weight and resulted to the increase of grain yield. One reason to adaptation of modern cultivars for modern cultivation was their lower sensitivity to density. Thus,larger sink for the grains and the optimization of plant types for light interception should be given greater consideration in dryland wheat breeding on the Loess Plateau.

Key words: Dryland wheat, Genetic gain, Planting density, Light interception ability

表1

1940-2004年黄土高原代表性旱地冬小麦品种基本情况"

品种Cultivar 种植年代
Decade
育成年份
Year
亲本Pedigree 育成地
Breeding site
矮秆基因
Dwarfing gene
蚂蚱麦Mazha 1940s 1940 Landrace 陕西省 none
碧蚂1号Bima 1 1950s 1951 Mazha/Biyu 陕西省 none
丰产3号Fengchan 3 1960s 1964 Danmai 1/Xinong 6028×Bima1 陕西省 none
旱选10号Hanxuan 10 1970s 1966 Nongda 16/Huabei 187 山西省 none
小偃6号Xiaoyan 6 1980s 1981 (ST2422×464)/Xiaoyan96 陕西省 Rht-B1b+Rht8
长武134 Changwu 134 1990s 1997 (Changwu131×Xiaohei96)F1/Changwu131)F4/(Jinghua3/NS2761)F1 陕西省 Rht-B1b
长旱58 Changhan 58 2000s 2004 Changwu112/PH82-2 陕西省 Rht-B1b

表2

不同密度处理7个冬小麦品种的产量变化"

年份Year 低密度LD 中密度MD 高密度HD 变异系数CV(%)
1940 4 043b 5 210a 3 533b 20
1951 4 413b 6 023a 4 270b 20
1964 6 590a 5 593ab 4 970b 14
1966 4 160b 5 243a 3 873b 16
1981 5 833b 6 690a 5 093b 14
1997 6 860ab 7 250a 6 320b 7
2004 7 166c 8 183b 9 496a 14
遗传增益Genetic gain(%) 0.65 1.29 0.93 -1.15
R2 0.7920* 0.8149** 0.8327* 0.5558*
SE 511 422 771 0.137

图1

不同密度处理下7个冬小麦品种收获期株高变化*表示P<0.05 线性关系显著;**表示P<0.01线性关系极显著,下同。"

表3

不同密度处理7个冬小麦品种的产量构成差异"

育成年份Year 地上部生物量
Aboveground biomass(kg/hm2)
收获指数
Harvest index (%)
千粒重
1000-grain weight(g)
低密度LD 中密度MD 高密度HD 低密度LD 中密度MD 高密度HD 低密度LD 中密度MD 高密度HD
1940 12 093 16 567 13 710 29.5 32.2 27.0 37.2 35.4 35.3
1951 13 933 12 733 13 760 31.8 39.9 31.2 41.7 40.1 39.9
1964 13 763 15 527 11 253 43.3 33.3 31.5 42.1 41.7 40.5
1966 12 807 15 443 11 980 32.5 37.5 31.8 35.8 35.1 34.2
1981 13 200 17 577 13 683 41.1 40.6 36.4 42.5 41.7 40.5
1997 15 387 18 340 14 063 44.0 43.7 41.9 48.3 46.6 45.8
2004 15 037 16 820 18 343 44.2 48.4 50.8 45.4 44.7 42.4
遗传增益Genetic gain(%) 0.29 0.30 0.37 0.64 0.52 0.88 0.34 0.37 0.31
R2 0.6304* 0.3549 0.3191 0.7116* 0.7245* 0.9275** 0.5658* 0.6334* 0.5172
SE 444.7 690.4 852.5 2.5 2.1* 3.1 1.6 1.6 1.5
育成年份Year 单位面积穗数
Spike number(104/hm2)
穗粒数
grain number per spike
单位面积子粒数
Grain number(106/hm2)
低密度LD 中密度MD 高密度HD 低密度LD 中密度MD 高密度HD 低密度LD 中密度MD 高密度HD
1940 450.7 739.3 686.3 37.1 31.8 27.4 168.0 235.5 187.6
1951 516.7 659.3 594.3 30.5 25.9 22.2 145.2 171.3 131.9
1964 539.0 638.7 536.3 32.1 25.8 23.4 173.8 164.1 125.5
1966 576.7 742.0 688.3 31.8 21.8 19.5 183.3 162.0 134.2
1981 554.7 847.0 753.0 31.3 27.0 29.8 181.7 231.1 225.2
1997 561.7 748.3 617.3 35.0 24.5 26.1 196.5 183.8 158.8
2004 484.0 604.3 726.0 40.4 34.8 31.6 194.5 210.7 228.0
遗传增益Genetic gain(%) 0.12 0.04 0.15 0.18 0.09 0.36 0.35 0.05 0.49
R2 0.1041 0.0076 0.0837 0.1607 0.0179 0.2403 0.6415* 0.0056 0.2063
SE 17.2 31.2 29.2 1.4 1.7 1.6 6.6 11.9 16.6

表4

不同密度处理7个冬小麦品种的产量与产量构成因素相关性"

项目Item 低密度
LD
中密度
MD
高密度
HD
单位面积子粒数Grain number 0.650 0.248 0.548
千粒重1000-grain weight 0.858** 0.850* 0.666
地上部生物量Aboveground biomass 0.804** 0.456 0.832*
收获指数Harvest index 0.982** 0.933** 0.970**

图2

不同密度处理7个冬小麦品种的旗叶净光合速率和旗叶氮含量"

图3

不同密度处理下7个冬小麦品种的冠层特征"

表5

不同密度处理产量与花期光合特征相关性"

密度Density 项目Item 旗叶光合速率Pn 叶面积指数LAI 平均叶倾角MTA 冠层下可见天空比DIFN
低密度LD 产量Yield 0.832* 0.663 -0.173 -0.523
千粒重1000-grain weight 0.844 0.830* 0.286 -0.595
单位面积子粒数Grain number per unit area 0.688 0.135 -0.333 -0.167
地上部生物量Aboveground biomass 0.801 0.788* 0.315 -0.719
收获指数Harvest index 0.754 0.536 -0.263 -0.385
中密度MD 产量Yield 0.610 0.847* 0.215 -0.827*
千粒重1000-grain weight 0.600 0.598* 0.299 -0.919**
单位面积子粒数Spike number per unit area 0.634 0.396 0.542 -0.318
地上部生物量Aboveground biomass 0.377 0.548 0.032 -0.540
收获指数Harvest index 0.338 0.625 0.054 -0.603
高密度HD 产量Yield 0.799* 0.721 0.378 -0.678
千粒重1000-grain weight 0.862* 0.919** 0.683 -0.937**
单位面积子粒数Spike number per unit area 0.525 0.392 0.329 -0.393
地上部生物量Aboveground biomass 0.689 0.400 0.306 -0.419
收获指数Harvest index 0.742 0.773 0.395 -0.662
[1] Richards R A . Selectable traits to increase crop photosynthesis and yield of grain crops. Journal of Experimental Botany, 2000,51(S1):447-458.
doi: 10.1093/jexbot/51.suppl_1.447
[2] Brancourt-Hulmel M, Doussinault G, Lecomte C , et al. Genetic improvement of agronomic traits of winter wheat cultivars released in France from 1946 to 1992. Crop Science, 2003,43(1):37-45.
doi: 10.2135/cropsci2003.3700
[3] Austin R B, Bingham J, Blackwell R D , et al. Genetic improvements in winter wheat yields since 1900 and associated physiological changes. Journal of Agricultural Science, 1980,94(3):675-689.
doi: 10.1017/S0021859600028665
[4] Fischer R A, Maurer R, Edmeades G O . Breeding and cereal yield progress. Crop Science, 2010,50(S1):85-98.
doi: 10.2135/cropsci2009.10.0564
[5] Maydup M L, Antonietta M, Guiamet J J , et al. The contribution of green parts of the ear to grain filling in old and modern cultivars of bread wheat (Triticum aestivum L.):Evidence for genetic gains over the past century. Field Crops Research, 2012,134(8):208-215.
doi: 10.1016/j.fcr.2012.06.008
[6] Perry M W , D’Antuono M F.Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Crop Pasture Science, 1989,40(3):457-472.
[7] Tian Z W, Jing Q, Dai T B , et al. Effects of genetic improvements on grain yield and agronomic traits of winter wheat in the Yangtze River Basin of China. Field Crops Research, 2011,124(3):417-425.
doi: 10.1016/j.fcr.2011.07.012
[8] Zheng T C, Zhang X K, Yin G H , et al. Genetic gains in grain yield,net photosynthesis and stomatal conductance achieved in Henan Province of China between 1981 and 2008. Field Crops Research, 2011,122(3):225-233.
doi: 10.1016/j.fcr.2011.03.015
[9] Gent M P N, Kiyomoto R K . Comparison of canopy and flag leaf net carbon dioxide exchange of 1920 and 1977 New York winter wheats. Crop Science, 1985,25(1):81-86.
doi: 10.2135/cropsci1985.0011183X002500010021x
[10] Gooding M J, Pinyosinwat A, Ellis R H . Responses of wheat grain yield and quality to seed rate. Journal of Agriculture Science, 2002,138(3):317-331.
[11] Easson D L, White E M, Pickles S J . The effects of weather,seed rate and cultivar on lodging and yield in winter wheat. Journal of Agricultural Science, 1993,121(2):145-156.
doi: 10.1017/S0021859600077005
[12] Arduini I, Masoni A, Ercoli L , et al. Grain yield,and dry matter and nitrogen accumulation and remobilization in durum wheat as affected by variety and seeding rate. European Journal of Agronomy, 2006,25(4):309-318.
doi: 10.1016/j.eja.2006.06.009
[13] Brian B L, Cárcamo H A, Yang R C , et al. Integrating spring wheat sowing density with variety selection to manage wheat stem sawfly. Agronomy Journal, 2011,103(6):1755-1764.
doi: 10.2134/agronj2011.0187
[14] Black A L, Aase J K . Yield component comparisons between USA and USSR winter wheat cultivars. Agronomy Journal, 1982,74(3):436-441.
doi: 10.2134/agronj1982.00021962007400030009x
[15] Anderson W K, Barclay J . Evidence for differences between three wheat cultivars in yield response to plant population. Australian Journal of Agricultural Research, 1991,42(5):701-713.
doi: 10.1071/AR9910701
[16] Carr P M, Horsley R D, Poland W W . Tillage and seeding rate effects on wheat cultivars.I.Grain production. Crop Science, 2003,43(1):202-209.
doi: 10.2135/cropsci2003.2020
[17] Fang Y, Xu B C, Turner N C , et al. Grain yield,dry matter accumulation and remobilization,and root respiration in winter wheat as affected by seeding rate and root pruning. European Journal of Agronomy, 2010,33(4):257-266.
doi: 10.1016/j.eja.2010.07.001
[18] 庄巧生 . 中国小麦品种改良及系谱分析.北京: 中国农业出版社, 2003: 3-5.
[19] 张园, 郝明德, 庞玉辉 , 等. 黄土旱作区长武字号小麦的品种性状和品质特性演变规律. 西北农业学报, 2009,18(1):65-70.
[20] 张园, 郝明德, 庞玉辉 . 黄土高原沟壑区小麦品种演替过程中子粒灌浆特性研究. 麦类作物学报, 2008,28(6):1058-1062.
[21] 陈旭, 郝明德, 许晶晶 , 等. 干旱对关中地区不同年代小麦品种旗叶光合特性的影响. 干旱地区农业研究, 2012,30(1):159-163,169.
[22] Ortiz-Monasterio R, Sayre K D, Rajaram S , et al. Genetic progress in wheat yield and nitrogen use efficiency under four nitrogen rates. Crop Science, 1997,37(3):898-904.
doi: 10.2135/cropsci1997.0011183X003700030033x
[23] 姚有华, 谢德庆, 叶景秀 . 青海高原不同生态区冬小麦兰天15号种植密度与适生性研究.作物杂志, 2015(2):154-157.
[24] 赵广才, 朱新开, 王法宏 , 等. 黄淮冬麦区水地小麦高产高效技术模式.作物杂志, 2015(1):163-164.
[25] Donald C M. Competitive plants,communal plants,and yield in wheat crops // Evans L T,Peacock W J.Wheat Science-Today and Tomorrow. Cambridge: Cambridge University Press, 1981: 223-247.
[26] Sayre K D, Rajaram S, Fischer R A . Yield potential progress in short bread wheats in northwest Mexico. Crop Science, 1997,37(1):36-42.
doi: 10.2135/cropsci1997.0011183X003700010006x
[27] Thorne G N . Physiology of grain yield of wheat and barley//Rothamsted Experimental Station,Report for 1973. Hertfordshire:Rothamsted Experimental Station, 1974: 5-25.
[28] Reynolds M P ,Delgado B M I,Gutiécrrez-Rodríguez M,et al.Photosynthesis of wheat in a warm,irrigated environment:I:Genetic diversity and crop productivity. Field Crops Research, 2000,66(1):37-50.
doi: 10.1016/S0378-4290(99)00077-5
[29] Zhu X G, Long S P, Ort D R . Improving photosynthetic efficiency for greater yield. Annual Review of Plant Biology, 2010,61:235-261.
doi: 10.1146/annurev-arplant-042809-112206
[30] Lanning S P, Talbert L E, Martin J M , et al. Genotype of wheat and barley affects light penetration and wild oat growth. Agronomy Journal, 1997,89(1):100-103.
doi: 10.2134/agronj1997.00021962008900010015x
[31] Condon A G, Richards R A, Rebetzke G J , et al. Breeding for high water-use efficiency. Journal of Experimental Botany, 2004,55(407):2447-2460.
doi: 10.1093/jxb/erh277
[32] Huel D G, Hucl P . Genotypic variation for competitive ability in spring wheat. Plant Breeding, 1996,115(5):325-329.
doi: 10.1111/pbr.1996.115.issue-5
[33] 王艺陶, 衣莹, 章建新 , 等. 不同灌水处理对冬小麦冠层结构及光合特性的影响. 干旱地区农业研究, 2009,27(6):63-66,72.
[34] Parry M A J, Reynolds M, Salvucci M E , et al. Raising yield potential of wheat.II.Increasing photosynthetic capacity and efficiency. Journal of Experimental Botany, 2011,62(10):453-467.
doi: 10.1093/jxb/erq304
[1] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121–125
[2] 孟凡华, 徐育成, 冯正勇, 等. 旱地小麦中旱110的特征特性及高产栽培技术[J]. 作物杂志, 2003, (2): 33–34
[3] 高海涛, 沈东风, 吴少辉, 等. 旱地小麦新品种豫麦48的产量特性分析[J]. 作物杂志, 2002, (3): 47–48
[4] 王长春, 贾考生, 冯艳丽. 优质强筋小麦新品种铜麦3号的选育[J]. 作物杂志, 2001, (6): 42–42
[5] 智广俊. 优质旱地小麦新品种蒙麦35的选育[J]. 作物杂志, 2001, (2): 41–42
[6] 冯保荣, 耿林荣. 旱地小麦地膜覆盖穴播栽培技术[J]. 作物杂志, 2000, (5): 30–31
[7] 孙美荣, 李岩华, 张俊灵, 等. 抗旱高产小麦新品种晋麦63[J]. 作物杂志, 2000, (4): 24–24
[8] 刘丽, 于亚雄, 杨延华, 等. 旱地小麦新品种云麦42的高产稳产性分析[J]. 作物杂志, 2000, (3): 34–35
[9] 付文词, 卢立鸿, 王兴雨. 鲁东南丘陵旱地小麦甘薯两熟制栽培技术[J]. 作物杂志, 1999, (5): 12–13
[10] 喻莉明. 旱地小麦起垄精播覆膜的栽培技术[J]. 作物杂志, 1999, (3): 30–30
[11] 张凤玲, 孙锡勇. 耐旱小麦新品种莱农8834及其栽培技术[J]. 作物杂志, 1999, (1): 24–24
[12] 赵广才. 加强冬小麦春季管理 立足抗旱保丰收[J]. 作物杂志, 1998, (2): 28–28
[13] 朱耀瑄, 张福锁. 旱地小麦高产关键配套技术研究[J]. 作物杂志, 1992, (3): 22–23
[14] 李承华, 李英德, 杨经泽. 芝麻种植密度的初步研究[J]. 作物杂志, 1990, (2): 36–38
[15] 吕树谦, 吳振国. 山旱地小麦增产经验[J]. 作物杂志, 1985, (2): 15–15
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .