作物杂志,2019, 第1期: 1521 doi: 10.16035/j.issn.1001-7283.2019.01.003
所属专题: 其他作物
史娜溶,李静静,吴慧玉,孙道杰,冯毅,王辉,刘新伦,张玲丽
Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang
摘要:
西农979是我国黄淮麦区优质高产、早熟耐寒兼抗赤霉病的小麦新品种。十倍体长穗偃麦草(Thinopyrum ponticum)7E染色体携带有抗赤霉病和抗叶锈病等多种抗性基因。为明确西农979品种的遗传基础,以西农979及其主要供体亲本小偃6号、早优504、陕229、陕213和西农881为材料进行系谱分析,结果表明,西农979及其主要供体亲本陕229、陕213、西农881均为小偃6号的衍生系;小偃6号是十倍体长穗偃麦草的衍生系。在此基础上,利用十倍体长穗偃麦草7E染色体上106个特异分子标记进行分析,发现有6个标记在西农979和小偃6号中扩增出了十倍体长穗偃麦草的特异片段,西农979和小偃6号均携带有十倍体长穗偃麦草7E染色体短臂上分子标记Xwmc653-Xwmc809之间的75.10~77.46cM区段,标记Xcfd31-Xgwm350之间的86.16~87.32cM区段,以及7E染色体长臂标记Xmag1932-Xdauk144之间的147.71~149.51cM区段。结果表明,西农979携带的十倍体长穗偃麦草7E染色体上的遗传物质源自小偃6号,这为进一步研究和利用西农979提供了理论参考。
[1] |
Li D Y, Li T H, Wu Y L , et al. FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Frontiers in Plant Science, 2018,9:526.
doi: 10.3389/fpls.2018.00526 |
[2] |
Dvořák J, Chen K C . Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Canadian Journal of Genetics and Cytalogy, 1984,26(2):128-132.
doi: 10.1139/g84-021 |
[3] |
Liu Z, Li D Y, Zhang X Y . Genetic relationships among five basic genomes St,E,A,B and D in Triticeae revealed by genomic southern and in situ hybridization. Journal of Integrative Plant Biology, 2007,49(7):1080-1086.
doi: 10.1111/j.1672-9072.2007.00462.x |
[4] |
Ayala-Navarrete L, Mechanicos A A, Gibson J M , et al. The Pontin series of recombinant alien translocations in bread wheat:single translocations integrating combinations of Bdv2,Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theoretical and Applied Genetics, 2013,126(10):2467-2475.
doi: 10.1007/s00122-013-2147-0 pmid: 23807636 |
[5] |
Zheng Q, Lv Z L, Niu Z X , et al. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014,41(11):591-599.
doi: 10.1016/j.jgg.2014.06.003 pmid: 25434682 |
[6] |
Shen X R, Kong L R, Ohm H . Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004,108(5):808-813.
doi: 10.1007/s00122-003-1492-9 pmid: 14628111 |
[7] |
Shen X, Ohm H . Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding, 2007,20(2):131-140.
doi: 10.1007/s11032-007-9079-9 |
[8] |
Guo J, Zhang X L, Hou Y L , et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015,128(11):2301-2316.
doi: 10.1007/s00122-015-2586-x pmid: 26220223 |
[9] |
Ceoloni C, Forte P, Gennaro A , et al. Recent developments in durum wheat chromosome engineering. Cytogenetic and Genome Research, 2005,109(1/2/3):328-344.
doi: 10.1159/000082416 |
[10] |
Li H, Wang X . Thinopyrum ponticum and Th.intermedium:the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 2009,36(9):557-565.
doi: 10.1016/S1673-8527(08)60147-2 pmid: 19782957 |
[11] |
Zheng Q, Luo Q L, Niu Z X , et al. Variation in chromosome constitution of the Xiaoyan series partial amphiploids and its relationship to stripe rust and stem rust resistance. Journal of Genetics and Genomics, 2015,42(11):657-660.
doi: 10.1016/j.jgg.2015.08.004 pmid: 26674383 |
[12] | 李振声 . 小麦远缘杂交新品种——小偃6号. 山西农业科学, 2017(5):30. |
[13] |
Tao F, Wang J J, Guo Z F , et al. Transcriptomic analysis reveal the molecular mechanisms of wheat higher-temperature seedling-plant resistance to Puccinia striiformis f. sp. Tritici. Frontiers in Plant Science, 2018,9:240.
doi: 10.3389/fpls.2018.00240 |
[14] | 李琼, 王长友, 刘新伦 , 等. 小偃6号及其衍生品种(系)遗传多样性的SSR分析. 麦类作物学报, 2008,28(6):950-955. |
[15] |
张玲丽, 孙道杰, 冯毅 , 等. 西农979抗赤霉病基因Fhb1的分子鉴定及其亲缘关系分析. 麦类作物学报, 2014,34(9):1199-1204.
doi: 10.7606/j.issn.1009-1041.2014.09.006 |
[16] |
Yang Y, Zhao X L, Xia L Q , et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007,115(7):971-980.
doi: 10.1007/s00122-007-0624-z pmid: 17712543 |
[17] |
孙道杰, 张玲丽, 冯毅 , 等. 西农系列小麦骨干新品种赤霉病抗源浅析. 麦类作物学报, 2016,36(6):822-823.
doi: 10.7606/j.issn.1009-1041.2016.06.20 |
[18] | Guo J, He F, Cai J J , et al. Molecular and cytological comparisons of chromosomes 7el(1),7el(2),7E(e),and 7E(i) derived from Thinopyrum. Cytogenetic and Genome Research, 2015,145(1): |
68-74. | |
[19] |
Zhang X L, Shen X R, Hao Y Y , et al. A genetic map of Lophopyrum ponticum chromosome 7E,harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011,122(2):263-270.
doi: 10.1007/s00122-010-1441-3 pmid: 20830464 |
[20] |
Mullan D J, Platteter A, Teakle N L , et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005,48(5):811-822.
doi: 10.1139/g05-040 pmid: 16391687 |
[21] |
Zhang L Y, Bernard M, Leroy P , et al. High transferability of bread wheat EST-derived SSRs to other cereals. Theoretical and Applied Genetics, 2005,111(4):677-687.
doi: 10.1007/s00122-005-2041-5 |
[22] |
Yu J K, Dake T M, Singh S , et al. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004,47(5):805-818.
doi: 10.1139/g04-057 pmid: 15499395 |
[23] |
Chen H M, Li L Z, Wei X Y , et al. Development,chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Science Bulletin, 2005,50(20):2328-2336.
doi: 10.1360/982005-379 |
[24] |
Xue S L, Zhang Z Z, Lin F , et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008,117(2):181-189.
doi: 10.1007/s00122-008-0764-9 pmid: 18437345 |
[25] |
Ayala-Navarrete L, Bariana H S, Singh R P , et al. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th.ponticum translocations in wheat. Theoretical and Applied Genetics, 2007,116(1):63-75.
doi: 10.1007/s00122-007-0647-5 pmid: 17906848 |
[26] |
裴阿卫, 王怡, 庞红喜 , 等. 强筋型优质小麦新品种陕253的选育研究(Ⅰ). 中国农学通报, 2004,20(4):101-103.
doi: 10.3969/j.issn.1000-6850.2004.04.035 |
[27] |
张荣琦, 陈春环, 赵晓农 , 等. 利用远缘杂交技术选育小麦新品种之研究. 中国农学通报, 2006,22(6):186-188.
doi: 10.3969/j.issn.1000-6850.2006.06.044 |
[28] |
宁锟, 王怡 . 陕229小麦新品种选育及其特性研究. 西北农业学报, 1996,5(2):15-18.
doi: 10.7606/j.issn.1004-1389.1996.2.003 |
[29] |
Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping Fhb1,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theretical and Applied Genetics, 2006,112(8):1465-1472.
doi: 10.1007/s00122-006-0249-7 pmid: 16518614 |
[30] |
刘新伦, 王超, 牛丽华 , 等. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017,50(20):3908-3917.
doi: 10.3864/j.issn.0578-1752.2017.20.007 |
[1] | 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 6876 |
[2] | 张晓娟,周福平,张一中,邵强,范昕琦,刘勇,柳青山. 复粒高粱不育系的研究[J]. 作物杂志, 2017, (2): 7275 |
[3] | 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 7579 |
[4] | 李忠南,王克伟,王越人,邬生辉,李光发. 玉米品种先玉335苗期叶绿素SPAD值的遗传分析[J]. 作物杂志, 2016, (4): 101101 |
[5] | 张海平,吴书峰,王志. 大豆对胞囊线虫4号生理小种的抗性遗传分析[J]. 作物杂志, 2016, (3): 2126 |
[6] | 孙鑫, 杨在东, 虞光辉, 等. Pinam、Pinbm和Gsp-1m基因表达载体构建及遗传转化[J]. 作物杂志, 2015, (4): 5560 |
[7] | 陈庆富, 陈其饺, 石桃雄, 等. 苦荞厚果壳性状的遗传及其与产量因素的相关性研究[J]. 作物杂志, 2015, (2): 2731 |
[8] | 刘化龙, 张宇, 邹德堂, 等. 香稻种质资源筛选及香味基因遗传研究[J]. 作物杂志, 2014, (6): 2126 |
[9] | 唐建卫, 殷贵鸿, 韩玉林, 等. 栽培措施对周麦27号主要农艺性状及品质特性的影响[J]. 作物杂志, 2013, (4): 111116 |
[10] | 肖人鹏, 周长海, 周瑞阳. 水稻~(60)Co γ辐照诱变雄性不育突变体的败育特征与遗传分析[J]. 作物杂志, 2012, (4): 7578 |
[11] | 王秀刚, 胡翠平, 杨涛, 车代弟, 樊金萍. 百合品种粉美与多安娜杂交F_1代主要性状遗传分析[J]. 作物杂志, 2012, (4): 9094 |
[12] | 赵姝丽, 李睿, 徐正进. 籼粳稻杂交气孔性状遗传的初步研究[J]. 作物杂志, 2010, (6): 6972 |
[13] | 张力科, 高用明. 水稻叶色突变体及其基因定位和克隆的研究进展[J]. 作物杂志, 2009, (2): 1216 |
[14] | 宿俊吉, 董永梅, 柴守诚. 普通小麦中外源异染色质的检测研究进展[J]. 作物杂志, 2008, (3): 1417 |
[15] | 翟虎渠, 谷福林, 万向元. 短日、低温粳稻不育新种质8608S的育性遗传初析[J]. 作物杂志, 2006, (1): 910 |
|