作物杂志,2019, 第1期: 15–21 doi: 10.16035/j.issn.1001-7283.2019.01.003

所属专题: 其他作物

• 遗传育种·种质资源·生物技术 • 上一篇    下一篇

西农979中长穗偃麦草(Thinopyrum ponticum)的遗传成分分析

史娜溶,李静静,吴慧玉,孙道杰,冯毅,王辉,刘新伦,张玲丽   

  1. 西北农林科技大学农学院,712100,陕西杨凌
  • 收稿日期:2018-10-23 修回日期:2018-12-21 出版日期:2019-02-15 发布日期:2019-02-01
  • 通讯作者: 张玲丽
  • 基金资助:
    杨凌示范区科技计划项目(2017NY-19);陕西省技术创新引导专项基金(2018XNCG-G-20);西北农林科技大学科研基金(2017-01)

Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers

Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang   

  1. College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
  • Received:2018-10-23 Revised:2018-12-21 Online:2019-02-15 Published:2019-02-01
  • Contact: Lingli Zhang

摘要:

西农979是我国黄淮麦区优质高产、早熟耐寒兼抗赤霉病的小麦新品种。十倍体长穗偃麦草(Thinopyrum ponticum)7E染色体携带有抗赤霉病和抗叶锈病等多种抗性基因。为明确西农979品种的遗传基础,以西农979及其主要供体亲本小偃6号、早优504、陕229、陕213和西农881为材料进行系谱分析,结果表明,西农979及其主要供体亲本陕229、陕213、西农881均为小偃6号的衍生系;小偃6号是十倍体长穗偃麦草的衍生系。在此基础上,利用十倍体长穗偃麦草7E染色体上106个特异分子标记进行分析,发现有6个标记在西农979和小偃6号中扩增出了十倍体长穗偃麦草的特异片段,西农979和小偃6号均携带有十倍体长穗偃麦草7E染色体短臂上分子标记Xwmc653-Xwmc809之间的75.10~77.46cM区段,标记Xcfd31-Xgwm350之间的86.16~87.32cM区段,以及7E染色体长臂标记Xmag1932-Xdauk144之间的147.71~149.51cM区段。结果表明,西农979携带的十倍体长穗偃麦草7E染色体上的遗传物质源自小偃6号,这为进一步研究和利用西农979提供了理论参考。

关键词: 普通小麦, 西农979, 十倍体长穗偃麦草, 遗传分析

Abstract:

Xinong 979 is a famous facultative cultivar with improved quality, high yield potential, and multi-resistance to various diseases, and has been widely extended in the southern Huanghuai Wheat Zone in China. Chromosome 7E of Thinopyrum ponticum carries Fusarium head blight (FHB) resistance gene (Fhb7), leaf rust resistance gene (Lr19) and stem rust resistance gene (Sr25). In this study, the pedigree and 7E chromosome molecular marker of Th. ponticum were used to analyze the genetic relationship among Xinong 979 and its 5 donor parents (Xiaoyan 6, Zaoyou 504, Shaan 229, Shaan 213, and Xinong 881), and Th. Ponticum. Pedigree analysis showed that the Xinong 979, Shaan 229, Shaan 213, and Xinong 881 were all derived from Xiaoyan 6. Xiaoyan 6 was a derivative from Th. ponticum. Six of 106 specific molecular markers of Th. ponticum chromosome 7E showed specific bands of Th. ponticum in Xinong 979 and Xiaoyan 6. Markers of Xwmc653 and Xwmc809 were located on 7ES 75.10-77.46cM; and Xcfd31 and Xgwm350 were located on 7ES 86.16-87.32cM; and Xmag1932 and Xdauk144 were located on 7EL 147.71-149.51cM. The results showed that Xinong 979 was a derivative from Xiaoyan 6. The study provides a reference for further research and utilization of Xinong 979.

Key words: Common wheat, Xinong 979, Thinopyrum ponticum, Genetic analysis

表1

本研究利用的十倍体长穗偃麦草7E染色体上的特异分子标记"

序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
1 Xbarc70 7ES USDA 54 Xpsp3003 7EL USDA
2 Xbarc76 7EL 55 Xpsp3123 7EL
3 Xbarc154 7ES 56 Xpsr121 7EL Ayala-Navarrete等[25]
4 XBE399084 7EL Ayala-Navarrete等[25] 57 Xpsr129 7EL
5 XBE404744 7EL 58 xsdauk107 7EL Guo等[8]
6 XBE406148 7EL 59 Xsdauk116 7EL
7 XBE445506 7EL 60 Xsdauk118 7EL
8 XBE445653 7EL 61 Xsdauk124 7EL
9 XBE489982 7EL 62 XsdauK13 7EL
10 XBE605194 7EL 63 XsdauK130 7EL
11 XBE637476 7EL 64 Xsdauk138 7EL
12 XBF145935 7EL 65 Xsdauk140 7EL
13 XBF200943 7EL 66 Xsdauk142 7EL
14 XBF483039 7EL 67 XsdauK144 7EL
15 XBG262436 7EL 68 Xsdauk159 7EL
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
16 XBG607810 7EL 69 Xsdauk165 7EL
17 XBM137749 7EL 70 XsdauK32 7EL
18 Xcfa2040 7EL USDA 71 Xsdauk336 7EL
19 Xcfa2049 7ES 72 Xsdauk339 7EL
20 Xcfa2106 7EL 73 Xsdauk340 7EL
21 Xcfa2174 7ES 74 xsdauk341 7EL
22 Xcfa2240 7EL 75 Xsdauk342 7EL
23 Xcfd14 7ES 76 XsdauK343 7EL
24 Xcfd21 7ES 77 Xsdauk343 7EL
25 Xcfd22 7ES 78 XsdauK345 7EL
26 Xcfd31 7ES 79 xsdauk345 7EL
27 Xcfd66 7EL 80 Xsdauk348 7EL
28 Xcfe100 7ES Zhang等[21] 81 Xsdauk350 7EL
29 Xcfe19 7EL 82 Xsdauk351 7EL
30 Xcfe202 7EL 83 XsdauK352 7EL
31 Xedm16 7ES Mullan等[20] 84 Xsdauk353 7EL
32 Xedm34 7ES 85 XsdauK355 7EL
33 Xedm105 7EL 86 Xsdauk356 7EL
34 Xedm109 7ES 87 XsdauK4 7EL
35 Xedm154 7ES 88 Xsdauk6 7EL
36 Xedm158 7EL 89 XsdauK60 7EL
37 Xedm335 7EL 90 XsdauK66 7EL
38 Xgwm130 7EL USDA 91 XsdauK71 7EL
39 Xgwm156 7ES 92 Xsdauk75 7EL
40 Xgwm295 7EL 93 Xsdauk8 7EL
41 Xgwm296 7EL 94 Xswes130 7ES Chen等[23]
42 Xgwm333 7EL 95 Xswes157 7EL
43 Xgwm350 7ES 96 Xswes19 7EL
44 Xgwm44 7ES 97 Xswes22 7ES
45 Xgwm471 7EL 98 Xswes354 7EL
46 Xgwm473 7EL 99 Xswes375 7EL
47 Xgwm635 7EL 100 Xswes376 7EL
48 Xksum052 7EL Yu等[22] 101 Xwmc273 7EL USDA
49 Xmag1759 7EL Xue等[24] 102 Xwmc606 7EL
50 Xmag1932 7EL 103 Xwmc653 7ES
51 Xmag2931 7ES 104 Xwmc809 7ES
52 Xmag2934 7ES 105 Xwmc83 7ES
53 Xmag3283 7ES 106 Xwmc702 7ES

图1

小麦品种西农979及其主要供体材料的系谱简图[15,26-28]"

图2

部分标记在西农979及其主要供体亲本中的扩增结果"

表2

在西农979及其系谱材料中扩增出十倍体长穗偃麦草特异条带的标记及扩增片段长度"

标记
Marker
在染色体7E
上位置(cM)a
Position on 7E
扩增片段长度Fragment size (bp)
长穗偃麦草
Th. ponticum
西农979
Xinong 979
中国春
Chinese spring
小偃6号
Xiaoyan 6
早优504
Zaoyou 504
陕229
Shaan 229
陕213
Shaan 213
西农881
Xinong 881
Xwmc653 75.10 180 180 0b 180 180 180 0b 0b
Xwmc809 77.46 161 161 180 161 161 161 161 161
Xcfd31 86.16 236 236 234 236 236 234 136 236
Xgwm350 87.32 198 198 188 198 198 198 198 198
Xmag1932 147.71 2117 2117 2033 2117 2117 2033 2033 2117
XdauK144 149.51 1896, 1869 1896, 1869 1888 1896, 1869 0b 1896, 1869 1896 1896
[1] Li D Y, Li T H, Wu Y L , et al. FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Frontiers in Plant Science, 2018,9:526.
doi: 10.3389/fpls.2018.00526
[2] Dvořák J, Chen K C . Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Canadian Journal of Genetics and Cytalogy, 1984,26(2):128-132.
doi: 10.1139/g84-021
[3] Liu Z, Li D Y, Zhang X Y . Genetic relationships among five basic genomes St,E,A,B and D in Triticeae revealed by genomic southern and in situ hybridization. Journal of Integrative Plant Biology, 2007,49(7):1080-1086.
doi: 10.1111/j.1672-9072.2007.00462.x
[4] Ayala-Navarrete L, Mechanicos A A, Gibson J M , et al. The Pontin series of recombinant alien translocations in bread wheat:single translocations integrating combinations of Bdv2,Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theoretical and Applied Genetics, 2013,126(10):2467-2475.
doi: 10.1007/s00122-013-2147-0 pmid: 23807636
[5] Zheng Q, Lv Z L, Niu Z X , et al. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014,41(11):591-599.
doi: 10.1016/j.jgg.2014.06.003 pmid: 25434682
[6] Shen X R, Kong L R, Ohm H . Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004,108(5):808-813.
doi: 10.1007/s00122-003-1492-9 pmid: 14628111
[7] Shen X, Ohm H . Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding, 2007,20(2):131-140.
doi: 10.1007/s11032-007-9079-9
[8] Guo J, Zhang X L, Hou Y L , et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015,128(11):2301-2316.
doi: 10.1007/s00122-015-2586-x pmid: 26220223
[9] Ceoloni C, Forte P, Gennaro A , et al. Recent developments in durum wheat chromosome engineering. Cytogenetic and Genome Research, 2005,109(1/2/3):328-344.
doi: 10.1159/000082416
[10] Li H, Wang X . Thinopyrum ponticum and Th.intermedium:the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 2009,36(9):557-565.
doi: 10.1016/S1673-8527(08)60147-2 pmid: 19782957
[11] Zheng Q, Luo Q L, Niu Z X , et al. Variation in chromosome constitution of the Xiaoyan series partial amphiploids and its relationship to stripe rust and stem rust resistance. Journal of Genetics and Genomics, 2015,42(11):657-660.
doi: 10.1016/j.jgg.2015.08.004 pmid: 26674383
[12] 李振声 . 小麦远缘杂交新品种——小偃6号. 山西农业科学, 2017(5):30.
[13] Tao F, Wang J J, Guo Z F , et al. Transcriptomic analysis reveal the molecular mechanisms of wheat higher-temperature seedling-plant resistance to Puccinia striiformis f. sp. Tritici. Frontiers in Plant Science, 2018,9:240.
doi: 10.3389/fpls.2018.00240
[14] 李琼, 王长友, 刘新伦 , 等. 小偃6号及其衍生品种(系)遗传多样性的SSR分析. 麦类作物学报, 2008,28(6):950-955.
[15] 张玲丽, 孙道杰, 冯毅 , 等. 西农979抗赤霉病基因Fhb1的分子鉴定及其亲缘关系分析. 麦类作物学报, 2014,34(9):1199-1204.
doi: 10.7606/j.issn.1009-1041.2014.09.006
[16] Yang Y, Zhao X L, Xia L Q , et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007,115(7):971-980.
doi: 10.1007/s00122-007-0624-z pmid: 17712543
[17] 孙道杰, 张玲丽, 冯毅 , 等. 西农系列小麦骨干新品种赤霉病抗源浅析. 麦类作物学报, 2016,36(6):822-823.
doi: 10.7606/j.issn.1009-1041.2016.06.20
[18] Guo J, He F, Cai J J , et al. Molecular and cytological comparisons of chromosomes 7el(1),7el(2),7E(e),and 7E(i) derived from Thinopyrum. Cytogenetic and Genome Research, 2015,145(1):
68-74.
[19] Zhang X L, Shen X R, Hao Y Y , et al. A genetic map of Lophopyrum ponticum chromosome 7E,harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011,122(2):263-270.
doi: 10.1007/s00122-010-1441-3 pmid: 20830464
[20] Mullan D J, Platteter A, Teakle N L , et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005,48(5):811-822.
doi: 10.1139/g05-040 pmid: 16391687
[21] Zhang L Y, Bernard M, Leroy P , et al. High transferability of bread wheat EST-derived SSRs to other cereals. Theoretical and Applied Genetics, 2005,111(4):677-687.
doi: 10.1007/s00122-005-2041-5
[22] Yu J K, Dake T M, Singh S , et al. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004,47(5):805-818.
doi: 10.1139/g04-057 pmid: 15499395
[23] Chen H M, Li L Z, Wei X Y , et al. Development,chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Science Bulletin, 2005,50(20):2328-2336.
doi: 10.1360/982005-379
[24] Xue S L, Zhang Z Z, Lin F , et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008,117(2):181-189.
doi: 10.1007/s00122-008-0764-9 pmid: 18437345
[25] Ayala-Navarrete L, Bariana H S, Singh R P , et al. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th.ponticum translocations in wheat. Theoretical and Applied Genetics, 2007,116(1):63-75.
doi: 10.1007/s00122-007-0647-5 pmid: 17906848
[26] 裴阿卫, 王怡, 庞红喜 , 等. 强筋型优质小麦新品种陕253的选育研究(Ⅰ). 中国农学通报, 2004,20(4):101-103.
doi: 10.3969/j.issn.1000-6850.2004.04.035
[27] 张荣琦, 陈春环, 赵晓农 , 等. 利用远缘杂交技术选育小麦新品种之研究. 中国农学通报, 2006,22(6):186-188.
doi: 10.3969/j.issn.1000-6850.2006.06.044
[28] 宁锟, 王怡 . 陕229小麦新品种选育及其特性研究. 西北农业学报, 1996,5(2):15-18.
doi: 10.7606/j.issn.1004-1389.1996.2.003
[29] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping Fhb1,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theretical and Applied Genetics, 2006,112(8):1465-1472.
doi: 10.1007/s00122-006-0249-7 pmid: 16518614
[30] 刘新伦, 王超, 牛丽华 , 等. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017,50(20):3908-3917.
doi: 10.3864/j.issn.0578-1752.2017.20.007
[1] 张莉,李赞堂,王士银,麻艳超,东方阳,李学勇,徐江. 水稻氮素吸收低效型突变体osnad1的生理和遗传分析[J]. 作物杂志, 2018, (3): 68–76
[2] 张晓娟,周福平,张一中,邵强,范昕琦,刘勇,柳青山. 复粒高粱不育系的研究[J]. 作物杂志, 2017, (2): 72–75
[3] 李钰,郑文寅,冯春,王荣富,李娟. 非生物逆境胁迫下普通小麦烟农19幼苗FeSOD基因表达分析[J]. 作物杂志, 2016, (4): 75–79
[4] 李忠南,王克伟,王越人,邬生辉,李光发. 玉米品种先玉335苗期叶绿素SPAD值的遗传分析[J]. 作物杂志, 2016, (4): 101–101
[5] 张海平,吴书峰,王志. 大豆对胞囊线虫4号生理小种的抗性遗传分析[J]. 作物杂志, 2016, (3): 21–26
[6] 孙鑫, 杨在东, 虞光辉, 等. Pinam、Pinbm和Gsp-1m基因表达载体构建及遗传转化[J]. 作物杂志, 2015, (4): 55–60
[7] 陈庆富, 陈其饺, 石桃雄, 等. 苦荞厚果壳性状的遗传及其与产量因素的相关性研究[J]. 作物杂志, 2015, (2): 27–31
[8] 刘化龙, 张宇, 邹德堂, 等. 香稻种质资源筛选及香味基因遗传研究[J]. 作物杂志, 2014, (6): 21–26
[9] 唐建卫, 殷贵鸿, 韩玉林, 等. 栽培措施对周麦27号主要农艺性状及品质特性的影响[J]. 作物杂志, 2013, (4): 111–116
[10] 肖人鹏, 周长海, 周瑞阳. 水稻~(60)Co γ辐照诱变雄性不育突变体的败育特征与遗传分析[J]. 作物杂志, 2012, (4): 75–78
[11] 王秀刚, 胡翠平, 杨涛, 车代弟, 樊金萍. 百合品种粉美与多安娜杂交F_1代主要性状遗传分析[J]. 作物杂志, 2012, (4): 90–94
[12] 赵姝丽, 李睿, 徐正进. 籼粳稻杂交气孔性状遗传的初步研究[J]. 作物杂志, 2010, (6): 69–72
[13] 张力科, 高用明. 水稻叶色突变体及其基因定位和克隆的研究进展[J]. 作物杂志, 2009, (2): 12–16
[14] 宿俊吉, 董永梅, 柴守诚. 普通小麦中外源异染色质的检测研究进展[J]. 作物杂志, 2008, (3): 14–17
[15] 翟虎渠, 谷福林, 万向元. 短日、低温粳稻不育新种质8608S的育性遗传初析[J]. 作物杂志, 2006, (1): 9–10
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵广才,常旭虹,王德梅,陶志强,王艳杰,杨玉双,朱英杰. 小麦生产概况及其发展[J]. 作物杂志, 2018, (4): 1 –7 .
[2] 权宝全,白冬梅,田跃霞,薛云云. 不同源库关系对花生光合特性及产量的影响[J]. 作物杂志, 2018, (4): 102 –105 .
[3] 黄学芳,黄明镜,刘化涛,赵聪,王娟玲. 覆膜穴播条件下降水年型和群体密度对张杂谷5号分蘖成穗及产量的影响[J]. 作物杂志, 2018, (4): 106 –113 .
[4] 黄文辉, 王会, 梅德圣. 农作物抗倒性研究进展[J]. 作物杂志, 2018, (4): 13 –19 .
[5] 赵云,徐彩龙,杨旭,李素真,周静,李继存,韩天富,吴存祥. 不同播种方式对麦茬夏大豆保苗和生产效益的影响[J]. 作物杂志, 2018, (4): 114 –120 .
[6] 陆梅,孙敏,任爱霞,雷妙妙,薛玲珠,高志强. 喷施叶面肥对旱地小麦生长的影响及与产量的关系[J]. 作物杂志, 2018, (4): 121 –125 .
[7] 王晓飞,徐海军,郭梦桥,肖宇,程薪宇,刘淑霞,关向军,吴耀坤,赵伟华,魏国江. 播期、密度及施肥对寒地油用型紫苏产量的影响[J]. 作物杂志, 2018, (4): 126 –130 .
[8] 朱鹏锦,庞新华,梁春,谭秦亮,严霖,周全光,欧克维. 低温胁迫对甘蔗幼苗活性氧代谢和抗氧化酶的影响[J]. 作物杂志, 2018, (4): 131 –137 .
[9] 高杰,李青风,彭秋,焦晓燕,王劲松. 不同养分配比对糯高粱物质生产及氮磷钾利用效率的影响[J]. 作物杂志, 2018, (4): 138 –142 .
[10] 商娜,杨中旭,李秋芝,尹会会,王士红,李海涛,李彤,张晗. 鲁西地区常规棉聊棉6号留叶枝栽培的适宜密度研究[J]. 作物杂志, 2018, (4): 143 –148 .