作物杂志,2020, 第1期: 5560 doi: 10.16035/j.issn.1001-7283.2020.01.010
田孟祥1,宫彦龙2,张时龙1(),何友勋1,雷月2,余本勋1,余莉1,李佳丽2,张大双2,叶永印1
Tian Mengxiang1,Gong Yanlong2,Zhang Shilong1(),He Youxun1,Lei Yue2,Yu Benxun1,Yu Li1,Li Jiali2,Zhang Dashuang2,Ye Yongyin1
摘要:
籼稻和粳稻在苗期耐低温基因COLD1的第4外显子存在1个功能性单碱基变异SNP2,粳型COLD1 Jap等位基因低温耐受性表现更强,具有重要的育种利用价值。通过籼粳杂交,可将粳型COLD1 Jap等位基因导入籼稻品种,提高其低温耐受力。为提高COLD1基因的选择效率,根据粳型COLD1 Jap与籼型COLD1 Ind基因存在的单核苷酸差异,结合扩增受阻突变体系PCR的技术原理设计功能标记。应用5个籼稻品种、5个粳稻品种、1个籼粳杂交F1个体以及1个籼粳杂交F2群体对功能标记进行检测验证。结果表明,所设计的功能标记可准确区分纯合粳型COLD1 Jap、纯合籼型COLD1 Ind和杂合基因型,其扩增带型与基因型完全一致,是一种鉴定COLD1基因的有效方法。该标记弥补了前人设计的衍生型酶切扩增多态性序列功能标记费用昂贵、操作复杂及费工费时等不足,可广泛应用于水稻COLD1基因的资源鉴定和分子标记辅助选择育种。
[1] | 田孟祥, 张时龙, 余本勋 , 等. 基于四引物扩增受阻突变体系PCR快速鉴定水稻S5基因的籼粳属性. 作物杂志,2015(6):48-53. |
[2] | Liu F X, Sun C Q, Tan L B , et al. Identification and mapping of quantitative trait loci controlling cold-tolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chinese Science Bulletin, 2003,48(19):2068-2071. |
[3] | Andaya V C, Mackill D J . QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica×indica cross. Theoretical and Applied Genetics, 2003,106(6):1084-1090. |
[4] | Xu L M, Zhou L, Zeng Y W , et al. Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Science, 2008,174(3):340-347. |
[5] | Kuroki M, Saito K, Matsuba S , et al. Quantitative trait locus analysis for cold tolerance at the booting stage in a rice cultivar,hatsushizuku. Japan Agricultural Research Quarterly, 2009,43(2):115-121. |
[6] | Lei J G, Zhu S, Shao C H , et al. Mapping quantitative trait loci for cold tolerance at the booting stage in rice by using chromosome segment substitution lines. Crop and Pasture Science, 2018,69(3):278-283. |
[7] | Shirasawa S, Endo T, Nakagomi K , et al. Delimitation of a QTL region controlling cold tolerance at booting stage of a cultivar,'Lijiangxintuanheigu',in rice,Oryza sativa L. Theoretical and Applied Genetics, 2012,124(5):937-946. |
[8] | Biswas P S, Khatun H, Das N , et al. Mapping and validation of QTLs for cold tolerance at seedling stage in rice from an indica cultivar Habiganj Boro VI (Hbj. BVI). 3 Biotech, 2017,7(6):359. |
[9] | 王棋, 范淑秀, 郭江华 , 等. 利用籼粳交RIL群体对水稻发芽期和苗期耐冷性的QTL分析. 华北农学报, 2019,34(1):83-88. |
[10] | 朱金燕, 杨梅, 嵇朝球 , 等. 利用染色体单片段代换系定位水稻芽期耐冷QTL. 植物学报, 2015,50(3):338-345. |
[11] | 刘次桃, 王威, 毛毕刚 , 等. 水稻耐低温逆境研究:分子生理机制及育种展望. 遗传, 2018,40(3):171-185. |
[12] | Saito K, Hayano-Saito Y, Kuroki M , et al. Map-based cloning of the rice cold tolerance gene Ctb1. Plant Science, 2010,179(1/2):97-102. |
[13] | Kim S I, Andaya V C, Tai T H . Cold sensitivity in rice (Oryza sativa L) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isozyme GSTZ2. Biochemical Journal, 2011,435(2):373-380. |
[14] | Fujino K, Sekiguchi H, Matsuda Y , et al. Molecular identification of a major quantitative trait locus,qLTG3-1,controlling low-temperature germinability in rice. Proceedings of the National Academy of Sciences of the United States of America, 2008,105(34):12623-12628. |
[15] | Lu G W, Wu F Q, Wu W X , et al. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature. The Plant Journal, 2014,78(3):468-480. |
[16] | Ma Y, Dai X Y, Xu Y Y , et al. COLD1 confers chilling tolerance in rice. Cell, 2015,160(6):1209-1221. |
[17] | Zhao J, Zhang S, Dong J , et al. A novel functional gene associated with cold tolerance at the seedling stage in rice. Plant Biotechnology Journal, 2017,15(9):1141-1148. |
[18] | Zhang Z Y, Li J J, Pan Y H , et al. Natural variation in CTB4a enhances rice adaptation to cold habitats. Nature Communications, 2017,8:14788. |
[19] | Liu C T, Ou S J, Mao B G , et al. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nature Communications, 2018,9(1):3302. |
[20] | Mao D H, Xin Y Y, Tan Y J , et al. Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proceedings of the National Academy of Sciences of the United States of America, 2019,116(9):3494-3501. |
[21] | 杨佳, 曹黎明, 周继华 , 等. 水稻耐低温基因COLD1功能标记的开发及应用. 分子植物育种, 2019,17(18):6028-6032. |
[22] | 田孟祥, 余本勋, 张时龙 , 等. 一种水稻高氮利用率NRT1.1B基因功能标记的开发与应用. 分子植物育种, 2016,14(2):410-416. |
[1] | 朱安,高捷,黄健,汪浩,陈云,刘立军. 水稻根系形态生理及其与稻米品质关系的研究进展[J]. 作物杂志, 2020, (2): 18 |
[2] | 轧宗杰,卢树昌,侯琨. 水稻旱直播栽培发展现状、问题及应用前景[J]. 作物杂志, 2020, (2): 915 |
[3] | 陈庭木,孙志广,邢运高,方兆伟,王宝祥,刘艳,徐大勇. 水稻可消化蛋白质含量测定方法研究及资源筛选[J]. 作物杂志, 2020, (1): 6166 |
[4] | 荆培培,任红茹,杨洪建,戴其根. 盐胁迫对2个不同盐敏感性水稻品种(系)叶片光合特性与产量的影响[J]. 作物杂志, 2020, (1): 6775 |
[5] | 马卉,焦小雨,许学,李娟,倪大虎,许蓉芳,王钰,汪秀峰. 水稻重金属镉代谢的生理和分子机制研究进展[J]. 作物杂志, 2020, (1): 18 |
[6] | 赵海新. 碱胁迫对水稻叶绿素及叶片脯氨酸和可溶性糖含量的影响[J]. 作物杂志, 2020, (1): 98102 |
[7] | 吕军,姜秀英,解文孝,刘军,蒋洪波,沈枫,韩勇. 辽宁省不同熟期水稻品质性状分析[J]. 作物杂志, 2020, (1): 1721 |
[8] | 李波,宫亮,曲航,金丹丹,孙文涛. 辽河三角洲稻区施氮水平对水稻生长发育及产量的影响[J]. 作物杂志, 2020, (1): 173178 |
[9] | 王鹤璎,郭晓红,张钦明,马艳,李猛,姜红芳,胡月,兰宇辰,徐令旗,郭洪涛,吕艳东. 水条播对寒地水稻农艺性状和产量构成因素的影响[J]. 作物杂志, 2020, (1): 8188 |
[10] | 石吕,薛亚光,魏亚凤,李波,石晓旭,刘建. 不同氮素粒肥水平下精米蒸煮食味品质变化及其与矿质元素含量相关性分析[J]. 作物杂志, 2019, (6): 5765 |
[11] | 李虎,陈传华,刘广林,吴子帅,黄秋要,罗群昌. 种植密度和施氮量对桂育9号农艺性状及产量的影响[J]. 作物杂志, 2019, (6): 99103 |
[12] | 李松,张世成,董云武,施德林,史云东. 基于SSR标记的云南腾冲水稻的遗传多样性分析[J]. 作物杂志, 2019, (5): 1521 |
[13] | 李冠男,黄立华,张璐,陈嘉兴,杨靖民. 施用有机肥和秸秆还田对东北苏打盐碱地水稻营养与食味品质的影响[J]. 作物杂志, 2019, (5): 8288 |
[14] | 马凡凡,邢素林,甘曼琴,刘佩诗,黄瑜,甘晓玉,马友华. 有机肥替代化肥对水稻产量、土壤肥力及农田氮磷流失的影响[J]. 作物杂志, 2019, (5): 8996 |
[15] | 谷娇娇,胡博文,贾琰,沙汉景,李经纬,马超,赵宏伟. 盐胁迫对水稻根系相关性状及产量的影响[J]. 作物杂志, 2019, (4): 176182 |
|