作物杂志,2020, 第4期: 8490 doi: 10.16035/j.issn.1001-7283.2020.04.012
徐园园1(), 赵鹏2, 洪权春1, 朱晓琴1, 裴冬丽1()
Xu Yuanyuan1(), Zhao Peng2, Hong Quanchun1, Zhu Xiaoqin1, Pei Dongli1()
摘要:
为了探究小麦MYB转录因子基因TaMYB70的功能,采用同源克隆方法分离TaMYB70(MK024291)基因cDNA序列,运用生物信息学手段分析该基因序列特征,采用实时荧光定量反转录PCR(qRT-PCR)检测其在不同逆境胁迫下的表达模式。结果表明,分离得到的TaMYB70部分序列长度为1 272bp,包含一个长度为1 008bp的开放阅读框,编码335个氨基酸残基。TaMYB70蛋白含有2个螺旋-转角-螺旋结构的Myb-type HTH DNA结合结构域。TaMYB70氨基酸序列与粗山羊草、二穗短柄草等植物MYB44同源性较高,与拟南芥R2R3-MYB转录因子第22亚族成员属于同一分支。qRT-PCR分析表明,TaMYB70在脱落酸胁迫下表达量升高,在PEG和NaCl胁迫下表达量下降,该转录因子可能参与小麦逆境胁迫应答。
[1] | Stracke R, Werber M, Weisshaar B . The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 2001,4(5):447-456. |
[2] | 陈俊, 王宗阳 . 植物MYB类转录因子研究进展. 植物生理学与分子生物学学报, 2002,28(2):81-88. |
[3] | Paz-Ares J, Ghosal D, Wienand U , et al. The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. The EMBO Journal, 1987,6(12):3553-3558. |
[4] | Feller A, Machemer K, Braun E L , et al. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. The Plant Journal, 2011,66(1):94-116. |
[5] | Dubos C, Stracke R, Grotewold E , et al. MYB transcription factors in Arabidopsis. Trends in Plant Science, 2010,15(10):573-581. |
[6] | 樊锦涛, 蒋琛茜, 邢继红 , 等. 拟南芥R2R3-MYB家族第22亚族的结构与功能. 遗传, 2014,36(10):985-994. |
[7] | Cheong Y H, Chang H S, Gupta R , et al. Transcriptional profiling reveals novel interactions between wounding,pathogen,abiotic stress,and hormonal responses in Arabidopsis. Plant Physiology, 2002,129(2):661-677. |
[8] | Fowler S, Thomashow M F . Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell, 2002,14(8):1675-1690. |
[9] | Zhao Y, Xing L, Wang X G , et al. The ABA receptor PYL8 promotes lateral root growth by enhancing MYB77-dependent transcription of auxin-responsive genes. Science Signaling, 2014,7(328):ra53. |
[10] | Jung C K, Seo J S, Han S W , et al. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic ctress tolerance in transgenic Arabidopsis. Plant Physiology, 2008,146(2):623-635. |
[11] | Li D K, Li Y, Zhang L , et al. Arabidopsis ABA receptor RCAR1/PYL9 interacts with an R2R3-Type MYB transcription factor,AtMYB44. International Journal of Molecular Sciences, 2014,15(5):8473-8490. |
[12] | Persak H, Pitzschke A . Dominant repression by Arabidopsis transcription factor MYB44 causes oxidative damage and hypersensitivity to abiotic stress. International Journal of Molecular Sciences, 2014,15(2):2517-2537. |
[13] | Shamloo-Dashtpagerdi R, Razi H, Ebrahimie E , et al. Molecular characterization of Brassica napus stress related transcription factors,BnMYB44 and BnVIP1,selected based on comparative analysis of Arabidopsis thaliana and Eutrema salsugineum transcriptomes. Molecular Biology Reports, 2018,45(5):1111-1124. |
[14] | Liu C Y, Xie T, Chen C J , et al. Genome-wide organization and expression profiling of the R2R3-MYB transcription factor family in pineapple (Ananas comosus). BMC Genomics, 2017,18(1):503-519. |
[15] | Yang Y, Zhang L B, Chen P , et al. UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. The EMBO Journal, 2019,39(2):1-15. |
[16] | He J, Liu Y Q, Yuan D Y , et al. An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proceedings of the National Academy of Sciences of the United States of America, 2020,117(1):271-277. |
[17] | 赵哲, 李德款, 袁德志 , 等. AtMYB44与ABI1竞争性结合ABA受体RCAR1的研究. 四川大学学报(自然科学版), 2015,52(3):663-667. |
[18] | 樊锦涛 . 拟南芥AtMYB73响应干旱机制初探. 保定:河北农业大学, 2015. |
[19] | Kim J H, Nguyen N H, Jeong C Y , et al. Loss of the R2R3 MYB,AtMyb73,causes hyper-induction of the SOS1 and SOS3 genes in response to high salinity in Arabidopsis. Journal of Plant Physiology, 2013,170(16):1461-1465. |
[20] | 庞茜, 赵亚婷, 樊锦涛 , 等. AtMYB73基因正调控拟南芥对盐胁迫的响应. 河北农业大学学报, 2017,40(5):48-47,59. |
[1] | 范园园, 吴海梅, 逄蕾, 路建龙, 夏博文, 杨旭海. 基于Meta分析评价秸秆覆盖对我国北方半干旱区不同生态区域小麦产量的影响[J]. 作物杂志, 2020, (4): 143149 |
[2] | 刘东军, 宋维富, 杨雪峰, 赵丽娟, 宋庆杰, 张春利, 辛文利, 肖志敏. 小麦Fhb1基因定位、克隆及其在抗赤霉病育种中利用的研究进展[J]. 作物杂志, 2020, (4): 1620 |
[3] | 张谦, 李耀发, 王树林, 王燕, 冯国艺, 林永增, 梁青龙, 雷晓鹏, 祁虹. 棉花–小麦条带种植对棉花苗蚜发生及为害的影响[J]. 作物杂志, 2020, (4): 206210 |
[4] | 杨子光, 郭利磊, 张珂, 孙军伟, 孟丽梅. 黄淮旱地冬小麦主要性状演变规律研究[J]. 作物杂志, 2020, (4): 3036 |
[5] | 王中秋, 应鹏飞, 陈梦涛, 贺琼颖, 胡鑫. 普通小麦-野生二粒小麦染色体臂置换系籽粒与品质性状分析[J]. 作物杂志, 2020, (4): 3744 |
[6] | 杨斌, 闫雪, 温宏伟, 王曙光, 逯腊虎, 范华, 景蕊莲, 孙黛珍. 不同水分条件下小麦持绿表型性状评价及其与产量相关性研究[J]. 作物杂志, 2020, (4): 4552 |
[7] | 陈卫国, 张政, 史雨刚, 曹亚萍, 王曙光, 李宏, 孙黛珍. 211份小麦种质资源抗旱性的评价[J]. 作物杂志, 2020, (4): 53 |
[8] | 单子龙, 班进福, 赵彦坤, 曹巧, 田国英, 何明琦, 高振贤. 河北省小麦品质相关基因的KASP标记检测[J]. 作物杂志, 2020, (4): 6471 |
[9] | 宋晓, 黄晨晨, 黄绍敏, 张珂珂, 岳克, 张水清, 郭斗斗, 张玉亭. 不同耕作和有机培肥措施对土壤理化性质及小麦产量的影响[J]. 作物杂志, 2020, (3): 102108 |
[10] | 吕广德, 殷复伟, 孙盈盈, 钱兆国, 徐加利, 李宁, 薛丽娜, 吴科. 不同播种量对临麦4号产量和干物质积累及分配的影响[J]. 作物杂志, 2020, (3): 142148 |
[11] | 柴芳梅, 高甜甜, 柴守玺, 程宏波, 宋亚丽, 鲁清林. 种植密度对甘肃不同生态区小麦产量形成的影响[J]. 作物杂志, 2020, (3): 154160 |
[12] | 刘勇, 刘易科, 朱展望, 田进东, 陈泠, 邹娟, 赵发文, 关健, 高春保, 佟汉文. 小麦有机生产现状与分析——以湖北省南漳县稻茬麦有机产品认证为例[J]. 作物杂志, 2020, (3): 1621 |
[13] | 朱英杰, 刘富启, 张燕, 常旭虹, 王德梅, 陶志强, 王艳杰, 杨玉双, 赵广才. 不同土壤条件下氮肥处理对小麦产量及品质的影响[J]. 作物杂志, 2020, (3): 184190 |
[14] | 李红琴, 刘宝龙, 张波, 张怀刚. 青海省审定小麦品种SSR遗传多样性分析及分子身份证的建立[J]. 作物杂志, 2020, (3): 6065 |
[15] | 段俊枝, 齐学礼, 冯丽丽, 张会芳, 孙岩, 燕照玲, 陈海燕, 齐红志, 樊文杰, 杨翠苹, 刘毓侠, 任银玲, 张甲源, 李莹, 卓文飞. 抗旱基因在小麦抗旱基因工程中的应用进展[J]. 作物杂志, 2020, (3): 715 |
|