作物杂志,2022, 第2期: 113–118 doi: 10.16035/j.issn.1001-7283.2022.02.016

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

秸秆覆盖深松对夏玉米田土壤有机碳库的影响

郭书亚1(), 尚赏1, 王坤2, 付国占3,*(), 卢广远1,*()   

  1. 1商丘市农林科学院,476000,河南商丘
    2北京联创种业有限公司,100018,北京
    3河南科技大学农学院,471003,河南洛阳
  • 收稿日期:2021-01-19 修回日期:2021-05-26 出版日期:2022-04-15 发布日期:2022-04-24
  • 通讯作者: 付国占,卢广远
  • 作者简介:郭书亚,主要从事玉米育种的研究工作,E-mail: shuyaguo@163.com
  • 基金资助:
    国家科技支撑粮食丰产工程项目“豫南雨养区小麦玉米两熟丰产高效技术集成研究与示范”(2006BAD02A07-3);河南省现代农业产业技术体系建设专项“河南省玉米产业技术体系—商丘综合试验站”(Z2019-02-02)

Effects of Straw Mulching and Subsoiling on Soil Organic Carbon Pool in Summer Maize Field

Guo Shuya1(), Shang Shang1, Wang Kun2, Fu Guozhan3,*(), Lu Guangyuan1,*()   

  1. 1Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu 476000, Henan, China
    2Beijing Lintron Seed Co.,Ltd., Beijing 100018, China
    3College of Agriculture, Henan University of Science and Technology, Luoyang 471003, Henan, China
  • Received:2021-01-19 Revised:2021-05-26 Online:2022-04-15 Published:2022-04-24
  • Contact: Fu Guozhan,Lu Guangyuan

摘要:

为探究秸秆覆盖深松对土壤有机碳库的影响,采用4种耕作模式处理(深松覆盖、深松不盖、免耕覆盖、免耕不盖)在河南西平进行了连续3年田间试验,研究了不同处理对土壤中有机碳(SOC)、易氧化有机碳(ROC)和溶解性有机碳(DOC)含量的影响。结果表明,4种耕作模式下,SOC、ROC和DOC含量均随着土层的加深而降低;在0~5cm和5~10cm土层,秸秆覆盖处理下SOC、ROC和DOC含量高于不覆盖处理,表现为深松覆盖>免耕覆盖>深松不盖>免耕不盖;而从10~20cm土层以下,免耕处理下SOC、ROC和DOC含量急剧下降,表现为深松覆盖>深松不盖>免耕覆盖>免耕不盖。相关性分析表明,ROC、DOC含量与SOC含量之间分别存在显著和极显著的相关关系,说明土壤ROC和DOC的含量很大程度上与SOC的储量相关。

关键词: 秸秆覆盖深松, 土壤有机碳库, 易氧化有机碳, 溶解性有机碳

Abstract:

In order to study the effects of straw mulching and subsoiling on soil organic carbon matter in summer maize field. Four tillage patterns were adopted in Xiping county, Henan province for three years. Four tillage patterns were subsoiling and mulching, subsoiling and no mulching, no tillage and mulching, no tillage and no mulching. Effects of different treatments on the contents of soil organic carbon (SOC), readily oxidizable carbon (ROC), and dissolved organic carbon (DOC) were analyzed. Results showed that the contents of SOC, ROC and DOC under different treatment appeared a declining trend with soil depth. The contents of SOC, ROC and DOC were higher in straw mulching than in no straw mulching, subsoiling and mulching > no tillage and mulching > subsoiling and no mulching > no tillage and no mulching. Below the 10-20cm soil layer, the contents of SOC, ROC and DOC were dropped sharply in the no tillage treatments, subsoiling and mulching > subsoiling and no mulching > no tillage and mulching > no tillage and no mulching. Correlation analysis showed that the contents of ROC and DOC were significant or extremely significant correlation to SOC content, respectively. It showed the ROC and DOC contents in soil were significantly correlated with the SOC content.

Key words: Straw mulching and subsoiling, Soil organic carbon pool, Readily oxidizable carbon, Dissolved organic carbon

表1

不同处理SOC含量的动态变化

土层
Soil layer
(cm)
处理
Treatment
生育时期Growth stage
播种前
Before seeding
拔节期
Jointing
开花期
Flowering
花后15d
15d after anthesis
花后30d
30d after anthesis
花后45d
45d after anthesis
0~5 NT+NM 9.15±0.08c 9.74±0.08d 9.94±0.05c 9.54±0.15c 9.41±0.62b 9.24±0.17c
NT+M 10.13±0.14a 11.24±0.08b 12.28±0.12a 11.21±0.16a 10.79±0.21a 10.41±0.24a
SS+NM 9.57±0.08b 10.16±0.09c 10.44±0.29b 10.07±0.10b 9.98±0.19b 9.66±0.08b
SS+M 10.23±0.18a 12.48±0.17a 12.66±0.26a 11.36±0.25a 11.09±0.23a 10.68±0.15a
5~10 NT+NM 7.84±0.11c 7.98±0.04d 8.16±0.02c 8.06±0.02b 7.37±0.21c 6.95±0.12c
NT+M 8.57±0.08b 9.64±0.13b 10.11±0.46a 9.40±0.25a 8.05±0.03b 7.48±0.13b
SS+NM 8.11±0.29c 8.49±0.17c 8.86±0.04b 8.11±0.12b 7.82±0.17b 6.99±0.17c
SS+M 9.20±0.05a 10.11±0.26a 10.07±0.01a 9.74±0.08a 9.15±0.17a 8.66±0.33a
10~20 NT+NM 6.62±0.04b 7.16±0.17c 6.95±0.14c 5.24±0.08d 4.87±0.04d 4.74±0.58d
NT+M 7.37±0.03a 7.32±0.17c 7.39±0.16bc 6.20±0.04c 5.74±0.25c 5.62±0.04c
SS+NM 7.40±0.10a 7.57±0.17b 7.91±0.58ab 7.49±0.08b 6.87±0.21b 6.25±0.01b
SS+M 7.45±0.12a 7.86±0.04a 8.07±0.20a 7.78±0.04a 7.55±0.14a 7.32±0.08a
20~30 NT+NM 2.83±0.08d 2.56±0.07c 3.09±0.01b 2.69±0.06d 2.64±0.06d 2.32±0.16d
NT+M 3.62±0.04c 3.74±0.17b 3.20±0.12b 3.22±0.01c 3.23±0.07c 3.20±0.12c
SS+NM 4.29±0.12b 4.79±0.12a 5.12±0.04a 4.37±0.04b 4.19±0.02b 3.99±0.33b
SS+M 4.58±0.08a 4.66±0.33a 5.18±0.03a 4.99±0.08a 4.87±0.40a 4.67±0.09a
30~40 NT+NM 2.56±0.07c 2.17±0.02c 2.21±0.08c 2.15±0.03d 2.14±0.01d 2.10±0.04c
NT+M 2.71±0.04c 2.44±0.21b 2.50±0.25c 2.42±0.01c 2.41±0.02c 2.37±0.04c
SS+NM 3.00±0.08b 3.61±0.12a 3.99±0.08b 3.56±0.23b 3.37±0.21b 3.03±0.05b
SS+M 3.45±0.12a 3.70±0.12a 4.31±0.25a 4.24±0.08a 4.16±0.08a 3.75±0.42a

表2

不处理土壤ROC含量的动态变化

土层
Soil layer
(cm)
处理
Treatment
生育时期Growth stage
播种前
Before seeding
拔节期
Jointing
开花期
Flowering
花后15d
15d after anthesis
花后30d
30d after anthesis
花后45d
45d after anthesis
0~5 NT+NM 1.16±0.01c 1.86±0.01d 2.24±0.08b 1.76±0.12c 1.20±0.15c 1.02±0.04c
NT+M 1.45±0.02b 2.27±0.01b 2.81±0.11a 2.04±0.11b 1.70±0.12a 1.45±0.07a
SS+NM 1.21±0.06c 2.13±0.09c 2.36±0.07b 1.94±0.13bc 1.48±0.05b 1.23±0.12b
SS+M 1.55±0.05a 2.58±0.10a 2.95±0.12a 2.31±0.14a 1.90±0.11a 1.47±0.12a
5~10 NT+NM 0.90±0.16b 1.06±0.06c 1.53±0.09b 1.15±0.09c 0.86±0.03b 0.75±0.03c
NT+M 1.02±0.11ab 1.34±0.12b 1.97±0.21a 1.37±0.08b 0.98±0.04b 0.93±0.06b
SS+NM 0.96±0.09ab 1.17±0.11bc 1.67±0.12b 1.25±0.09bc 0.98±0.07b 0.87±0.02b
SS+M 1.12±0.08a 1.67±0.13a 1.99±0.07a 1.92±0.13a 1.18±0.10a 1.18±0.08a
10~20 NT+NM 0.73±0.08b 0.84±0.00b 0.95±0.09b 0.73±0.07b 0.52±0.03d 0.54±0.01d
NT+M 0.83±0.04a 0.87±0.03b 1.16±0.10ab 0.87±0.05b 0.70±0.03c 0.63±0.02c
SS+NM 0.83±0.01a 0.91±0.10b 1.28±0.15a 1.07±0.12a 0.79±0.03b 0.73±0.01b
SS+M 0.86±0.03a 1.26±0.07a 1.36±0.13a 1.19±0.11a 0.93±0.02a 0.89±0.03a
20~30 NT+NM 0.31±0.01c 0.28±0.01d 0.37±0.04c 0.31±0.04c 0.28±0.00d 0.24±0.02d
NT+M 0.39±0.01b 0.42±0.02c 0.47±0.02b 0.38±0.03b 0.35±0.02c 0.34±0.02c
SS+NM 0.47±0.03a 0.54±0.05b 0.74±0.03a 0.56±0.02a 0.46±0.02b 0.43±0.03b
SS+M 0.51±0.04a 0.75±0.03a 0.75±0.06a 0.66±0.05a 0.56±0.04a 0.52±0.02a
30~40 NT+NM 0.26±0.02c 0.23±0.02c 0.26±0.02c 0.23±0.03c 0.22±0.02d 0.22±0.02c
NT+M 0.29±0.04bc 0.27±0.04c 0.36±0.04b 0.26±0.02c 0.26±0.01c 0.25±0.03c
SS+NM 0.33±0.03ab 0.42±0.03b 0.55±0.02a 0.44±0.03b 0.36±0.03b 0.32±0.01b
SS+M 0.38±0.03a 0.53±0.02a 0.58±0.03a 0.53±0.01a 0.45±0.02a 0.40±0.04a

表3

不同处理土壤DOC含量的动态变化

土层
Soil layer
(cm)
处理
Treatment
生育时期Growth stage
播种前
Before seeding
拔节期
Jointing
开花期
Flowering
花后15d
15d after anthesis
花后30d
30d after anthesis
花后45d
45d after anthesis
0~5 NT+NM 95.49±8.32b 104.70±6.53c 116.46±4.04b 99.78±3.69c 71.23±2.18d 68.44±0.85c
NT+M 107.10±5.91ab 125.21±5.92ab 150.03±2.11a 120.07±7.68ab 105.93±3.05b 83.10±1.60a
SS+NM 100.32±2.24b 112.03±7.67bc 123.04±11.15b 110.51±10.27bc 90.89±3.10c 75.72±3.41b
SS+M 115.02±8.89a 138.69±14.70a 160.46±4.74a 130.66±6.98a 116.40±9.20a 83.23±1.10a
5~10 NT+NM 79.66±3.77b 82.03±3.29d 93.32±2.52b 81.77±1.43b 58.81±1.13c 50.83±1.26c
NT+M 89.96±1.37a 99.17±3.60b 116.30±8.55a 103.65±3.62a 71.78±0.80b 56.90±5.76b
SS+NM 83.19±2.96b 90.28±1.82c 101.64±5.71b 85.66±1.98b 70.17±2.03b 53.57±1.87bc
SS+M 95.36±3.59a 105.45±4.12a 117.22±3.18a 110.09±2.38a 92.68±2.25a 65.40±0.98a
10~20 NT+NM 61.11±4.10c 67.58±1.97b 76.63±4.08c 52.18±1.34c 39.57±0.98d 34.16±0.28d
NT+M 67.69±1.56b 69.55±2.85b 82.99±1.27b 66.61±1.95b 48.18±0.96c 41.41±0.64c
SS+NM 67.46±3.85b 70.11±1.93b 90.84±2.94a 76.86±1.68a 58.93±2.54b 46.44±1.46b
SS+M 75.93±2.18a 76.85±1.15a 92.87±2.74a 79.39±2.08a 71.31±0.46a 54.86±1.11a
20~30 NT+NM 24.99±3.04c 24.04±1.73c 28.70±2.68c 24.80±1.41d 20.95±0.11d 15.77±1.20d
NT+M 32.51±1.47b 34.97±1.24b 34.33±1.78b 30.88±0.95c 25.90±0.46c 21.96±0.11c
SS+NM 38.30±1.26a 44.21±1.00a 57.16±2.41a 44.54±2.97b 35.50±0.72b 28.77±2.20b
SS+M 41.95±1.85a 45.77±1.05a 59.18±2.78a 50.37±0.99a 45.47±1.87a 33.42±1.11a
30~40 NT+NM 22.23±1.21c 20.48±1.06b 20.49±2.22c 20.26±1.56d 17.13±1.10d 13.86±0.99d
NT+M 23.74±2.67bc 22.31±0.46b 23.96±2.62c 22.23±0.28c 19.24±0.66c 15.90±0.32c
SS+NM 25.98±1.31b 32.00±2.82a 38.91±0.80b 36.13±0.69b 27.90±0.52b 21.86±1.01b
SS+M 30.26±0.94a 33.27±2.02a 43.99±1.34a 42.80±0.98a 37.79±0.00a 26.47±0.54a

表4

土壤ROC、DOC含量与SOC含量之间的相关关系

土层
Soil layer
(cm)
指标
Index
生育时期Growth stage
播种前
Before seeding
拔节期
Jointing
开花期
Flowering
花后15d
15d after anthesis
花后30d
30d after anthesis
花后45d
45d after anthesis
0~5 ROC 0.8772** 0.9507** 0.9229** 0.8359** 0.7682** 0.9002**
DOC 0.7416** 0.8882** 0.9586** 0.8476** 0.8749** 0.9223**
5~10 ROC 0.6318* 0.8723** 0.9340** 0.8372** 0.8684** 0.8641**
DOC 0.9232** 0.9358** 0.8545** 0.8841** 0.9536** 0.8368**
10~20 ROC 0.7589** 0.7533** 0.5092 0.9180** 0.9451** 0.9498**
DOC 0.6418* 0.8340** 0.8381** 0.9808** 0.9714** 0.9570**
20~30 ROC 0.9080** 0.8928** 0.8550** 0.9681** 0.9718** 0.9405**
DOC 0.8818** 0.9140** 0.8036** 0.9899** 0.9804** 0.9450**
30~40 ROC 0.7866** 0.9292** 0.8309** 0.9700** 0.9697** 0.9840**
DOC 0.8953** 0.9452** 0.7606** 0.9837** 0.9842** 0.9397**
[1] 李琳. 保护性耕作对土壤有机碳库和温室气体排放的影响. 北京: 中国农业大学, 2007.
[2] Davidson S. Cultivation and soil organic matter. Rural Research, 1986, 131:13-18.
[3] Dalal R C, Chan K Y. Soil organic matter in rain fed cropping systems of the Australian cereal belt. Australian Journal of Soil Research, 2001, 39:435-446.
[4] 王新建, 张仁陟, 毕冬梅, 等. 保护性耕作对土壤有机碳组分的影响. 水土保持学报, 2009(2):115-121.
[5] 杨学明, 张晓平, 方华军, 等. 北美保护性耕作及对中国的意义. 应用生态学报, 2004, 15(2):335-340.
[6] 黄高宝, 郭清毅, 张仁陟, 等. 保护性耕作条件下旱地农田麦:豆双序列轮作体系的水分动态及产量效应. 生态学报, 2006, 26(4):1176-1185.
[7] Alvarez R, Diaz R A, Barbero N, et al. Soil organic carbon,microbial biomass and CO2-C production from three tillage systems. Soil and Tillage Research, 1995, 33:17-28.
doi: 10.1016/0167-1987(94)00432-E
[8] 邵月红, 潘剑君, 孙波. 不同森林植被下土壤有机碳的分解特征及碳库研究. 水土保持学报, 2005, 19(3):24-28.
[9] 高俊琴, 欧阳华, 白军红. 若尔盖高寒湿地土壤活性有机碳垂直分布特征. 水土保持学报, 2006, 20(1):76-79.
[10] 张志国, 徐琪. 长期秸秆覆盖免耕对土壤某些理化性质及玉米产量的影响. 土壤学报, 1998, 35(3):384-391.
[11] 李琳, 李素娟, 张海林, 等. 保护性耕作下土壤碳库管理指数的研究. 水土保持学报, 2006, 20(3):106-109.
[12] 田慎重, 宁堂原, 王瑜, 等. 不同耕作方式和秸秆还田对麦田土壤有机碳含量的影响. 应用生态学报, 2010, 21(2):373-378.
[13] 蔡立群, 齐鹏, 张仁陟, 等. 不同保护性耕作措施对麦―豆轮作土壤有机碳库的影响. 中国生态农业学报, 2009, 17(1):1-6.
[14] 苏永中, 赵哈林. 土壤有机碳储量、影响因素及其环境效应的研究进展. 中国沙漠, 2002, 22(3):220-228.
[15] 王燕, 王小彬, 刘爽, 等. 保护性耕作及其对土壤有机碳的影响. 中国生态农业学报, 2008, 16(3):766-771.
[16] 殷文, 郭瑶, 陈桂平, 等. 绿洲农田土壤团聚体组成及有机碳和全氮分布对秸秆还田方式的响应. 干旱地区农业研究, 2019, 37(3):139-148.
[17] 杨思存, 王成宝, 霍琳, 等. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响. 农业工程学报, 2019, 35(2):122-129.
[18] 王彩霞, 岳西杰, 葛玺祖, 等. 保护性耕作对土壤微团聚体碳、氮分布的影响. 植物营养与肥料学报, 2010, 16(3):642-649.
[19] 张博文, 杨彦明, 张兴隆, 等. 连续深松对黑土结构特性和有机碳及碳库指数影响. 中国土壤与肥料, 2019(2):6-13.
[20] 张洁, 姚宇卿, 金轲, 等. 保护性耕作对坡耕地土壤微生物量碳、氮的影响. 水土保持学报, 2007, 21(4):126-129.
[21] 王旭东, 张霞, 王彦丽, 等. 不同耕作方式对黄土高原黑垆土有机碳库组成的影响. 农业机械学报, 2017, 48(11):229-237.
[22] 田效琴, 贾会娟, 熊瑛, 等. 保护性耕作下蚕豆生育期土壤有机碳、氮含量变化与分布特征. 长江流域资源与环境, 2019, 28(5):1132-1141.
[23] 吕瑞珍, 熊瑛, 李友军, 等. 保护性耕作对农田土壤碳库特性的影响. 水土保持学报, 2014, 28(4):206-209,217.
[24] 傅敏, 郝敏敏, 胡恒宇, 等. 土壤有机碳和微生物群落结构对多年不同耕作方式与秸秆还田的响应. 应用生态学报, 2019, 30(9):3183-3194.
[25] 刘鹏程, 丘华昌. 水稻高留茬还田的土壤培肥作用. 湖北农业科学, 1995(1):32-35.
[26] 张婧, 张仁陟, 张军, 等. 黄土高原长期保护性耕作对麦―豆轮作土壤有机碳组分的影响. 甘肃农业大学学报, 2015(2):32-39,52.
[27] 贺美, 王迎春, 王立刚, 等. 深松施肥对黑土活性有机碳氮组分及酶活性的影响. 土壤学报, 2020, 57(2):446-456.
[28] 刘平奇, 张梦璇, 王立刚, 等. 深松秸秆还田措施对东北黑土土壤呼吸及有机碳平衡的影响. 农业环境科学学报, 2020, 39(5):1150-1160.
[29] 田慎重, 张玉凤, 边文范, 等. 深松和秸秆还田对旋耕农田土壤有机碳活性组分的影响. 农业工程学报, 2020, 36(2):185-192.
[30] 韦安培, 丁文超, 胡恒宇, 等. 耕作方式及秸秆还田对土壤性质、微生物碳源代谢及小麦产量的影响. 干旱地区农业研究, 2019, 37(6):145-152.
[31] 朱长伟, 龙潜, 董士刚. 小麦―玉米轮作体系不同旋耕和深耕管理对潮土微生物量碳氮与酶活性的影响. 植物营养与肥料学报, 2020, 26(1):51-63.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!