作物杂志,2023, 第3期: 200–204 doi: 10.16035/j.issn.1001-7283.2023.03.028

• 生理生化·植物营养·栽培耕作 • 上一篇    下一篇

增施大豆豆粕及豆粕炭对酸性水稻土的改良效果及对水稻产量的影响

吴艳1(), 柳开楼1(), 张景云2, 宋惠洁1, 胡丹丹1   

  1. 1江西省红壤及种质资源研究所/国家红壤改良工程技术研究中心,331717,江西南昌
    2江西省农业科学院蔬菜花卉研究所,330200,江西南昌
  • 收稿日期:2021-11-15 修回日期:2022-01-31 出版日期:2023-06-15 发布日期:2023-06-16
  • 通讯作者: 柳开楼,主要从事红壤改良与培肥方面的研究,E-mail:liukailou@163.com
  • 作者简介:吴艳,主要从事作物栽培研究,E-mail:wuyan070620@163.com
  • 基金资助:
    江西省豆类产业技术体系(JXARS-24);江西省重点研发计划项目(20203BBFL63063);江西省双千计划项目(jxsq2020102116)

Improvement Effects of Soybean Meal and Its Biochar on Acid Paddy Soil and Yield of Rice

Wu Yan1(), Liu Kailou1(), Zhang Jingyun2, Song Huijie1, Hu Dandan1   

  1. 1Jiangxi Institute of Red Soil and Germplasm Resources/National Engineering and Technology Research Center for Red Soil Improvement, Nanchang 331717, Jiangxi, China
    2Institute of Vegetables and Flowers, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, Jiangxi, China
  • Received:2021-11-15 Revised:2022-01-31 Online:2023-06-15 Published:2023-06-16

摘要:

为探讨大豆豆粕及其炭化还田对酸性水稻土的改良效果及对水稻产量的影响,通过大田试验,设置5个处理,分别为豆粕2250kg/hm2(A1)、豆粕4500kg/hm2(A2)、豆粕炭2250kg/hm2(B1)、豆粕炭4500kg/hm2(B2)和常规施肥(CK),分析不同处理下水稻产量、土壤pH、有机质和速效氮磷钾含量的变化。结果表明,与CK相比,施用豆粕和豆粕炭均可显著提高水稻产量(P<0.05),A1、A2、B1和B2处理的水稻产量分别比CK处理增加了11.1%、13.3%、8.3%和9.8%,且A1和A2处理的水稻产量显著高于B1和B2处理。水稻收获后,A1、A2、B1和B2处理土壤pH分别比CK处理提高了0.32、0.33、0.11和0.22;土壤有机质含量分别增加了12.40%、33.76%、11.93%和22.99%;土壤全氮含量分别增加了2.34%、5.33%、9.78%和7.95%;土壤有效磷含量分别增加了3.21%、28.78%、18.96%和24.18%。与CK处理相比,增施豆粕和豆粕炭处理产值增加,但纯收益及产投比降低,均表现为CK>A1>B1>A2>B2。因此,与豆粕炭相比,豆粕可作为较好的土壤改良剂培肥改良酸性水稻土。

关键词: 豆粕, 豆粕炭, 酸性水稻土, 土壤pH

Abstract:

To explore the improvement effects of soybean meal and biochar from soybean meal on acid paddy soil and yield of rice, five treatments were studied on field test: soybean meal 2250kg/ha (A1), soybean meal 4500kg/ha (A2), biochar from soybean meal 2250kg/ha (B1), biochar from soybean meal 4500kg/ha (B2) and conventional fertilization (CK). The rice yield, soil pH, organic matter and available nitrogen, phosphorus, potassium contents were analyzed. The result showed that compared with CK treatment, the grain yield of rice was increased significantly with the application of soybean meal and its biochar (P < 0.05). The rice yields of A1, A2, B1 and B2 treatments were higher by 11.1%, 13.3%, 8.3% and 9.8%. However, the grain yield of A1, A2 treatments were higher than those of B1 and B2 treatments. Compared with CK treatment, soil pH of A1, A2, B1 and B2 treatments was increased by 0.32, 0.33, 0.11 and 0.22, respectively; Soil organic matter were increased by 12.40%, 33.76%, 11.93% and 22.99%, respectively; Total nitrogen contents were increased by 2.34%, 5.33%, 9.78% and 7.95%, respectively; Available phosphorus contents were increased by 3.21%, 28.78%, 18.96% and 24.18%, respectively. The output of soybean meal and biochar from soybean meal increased, but the net income and the ratio decreased, it showed CK > A1 > B1 > A2 > B2. Therefore, compared with biochar from soybean meal, soybean meal was better soil conditioners for fertilizer improvement of acid paddy soil.

Key words: Soybean meal, Biochar from soybean meal, Acid paddy soil, Soil pH

表1

不同处理土壤改良剂和化肥用量

处理
Treatment
豆粕
Soybean
meal
豆粕炭
Biochar from
soybean meal
肥料用量
Fertilizer dosage
N P2O5 K2O
CK 0 180 120 150
A1 2250 180 120 150
A2 4500 180 120 150
B1 2250 180 120 150
B2 4500 180 120 150

图1

不同处理水稻产量变化 不同小写字母表示处理间存在显著差异(P < 0.05),下同

图2

不同处理土壤pH变化

表2

不同处理土壤肥力变化

采集时间
Sampling time
处理
Treatment
有机质
Organic matter (g/kg)
全氮
Total nitrogen (g/kg)
有效磷
Available phosphorus (mg/kg)
速效钾
Available potassium (mg/kg)
施肥后15d
15 days after fertilization
CK 20.88±1.42d 1.07±0.01c 21.11±1.30c 210.80±10.75c
A1 23.47±1.46c 1.18±0.01a 24.71±1.52b 244.98±11.93b
A2 27.93±1.74a 1.20±0.02a 31.91±1.96a 277.57±13.51a
B1 23.37±1.45c 1.09±0.02b 26.61±1.63b 239.72±11.67b
B2 25.68±1.60b 1.12±0.01b 30.40±1.87a 267.06±13.00a
水稻收获后
After rice harvesting
CK 22.98±1.43b 1.03±0.02c 20.87±1.12c 76.21±4.20b
A1 23.09±1.44b 1.16±0.02b 23.76±1.46b 97.78±4.76a
A2 25.20±1.57a 1.21±0.01a 25.54±1.26a 99.88±4.86a
B1 25.67±1.60a 1.15±0.01b 22.35±1.25b 97.78±4.76a
B2 25.85±1.61a 1.16±0.01b 22.92±1.28b 88.32±4.30a

表3

不同处理经济效益分析

处理
Treatment
投入(元/hm2)Input (yuan/hm2) 产值(元/hm2
Output (yuan/hm2)
纯收益(元/hm2
Income (yuan/hm2)
产投比
Production-investment ratio
人工Labor 物资Material 总投入Total input
CK 6000 4707 10 707 19 470 8763 1.82
A1 6000 12 582 18 582 21 636 3054 1.16
A2 6000 20 457 26 457 22 062 -4395 0.83
B1 6000 14 832 20 832 21 085 253 1.01
B2 6000 24 957 30 957 21 371 -9586 0.69
[1] 张福锁. 我国农田土壤酸化现状及影响. 民主与科学, 2016(6):26-27.
[2] 谢会雅, 陈舜尧, 张阳, 等. 中国南方土壤酸化原因及土壤酸性改良技术研究进展. 湖南农业科学, 2021(2):104-107.
[3] 王宇函, 吕波, 张林, 等. 不同土壤改良剂对酸性铝富集红壤毒性缓解效应的差异. 华中农业大学学报, 2019, 28(2):73-80.
[4] 朱宏斌, 王充青, 武际, 等. 酸性黄红壤上施用白云石的作物产量效应和经济效益评价. 土壤肥料, 2003(5):7-20.
[5] 叶厚专, 范业成. 磷石膏改良红壤的效应. 植物营养与肥料学报, 1996, 2(2):181-185.
[6] 胡红青, 李学垣, 刘景福, 等. 红壤上直接施用磷矿粉的增产效果和改土作用. 热带亚热带土壤科学, 1994, 3(4):219-225.
[7] 秋涛, 杨春茂, 徐文彬, 等. 土壤酸化研究进展. 地球科学进展, 1996, 11(4):396-401.
[8] 王激清, 张宝英, 刘社平, 等. 我国作物秸秆综合利用现状及问题分析. 江西农业学报, 2008, 20(8):126-128.
[9] 许中坚, 刘广深, 刘维屏. 人为因素诱导下的红壤酸化机制及其防治. 专业环境保护, 2002, 21(2):175-178.
[10] 罗吉文, 许蕾. 论低碳农业的产生内涵与发展对策. 农业现代化研究, 2010, 31(6):701-703.
[11] 李毅, 周金城, 李玉双, 等. 中国大豆进口及压榨产业链的非对称价格传导研究. 大豆科学, 2020, 177(1):152-157.
[12] 曹扬慧. 豆粕市场供需矛盾对下半年市场的影响. 广东饲料, 2021, 30(6):20-23.
[13] Wang N, Li J Y, Xu R K. Use of various agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use and Management, 2009, 25:128-132.
doi: 10.1111/sum.2009.25.issue-2
[14] 韦增辉, 潘运舟, 王雨阳, 等. 不同原料商品有机肥对土壤肥力性状及冬瓜产量的影响. 热带作物学报, 2019, 40(2):232-237.
[15] 万述伟, 张守才, 赵明, 等. 豆粕有机肥与化肥配施对大棚春黄瓜产量品质和土壤肥力的影响. 中国农学通报, 29(31),188-193.
[16] 孙桂阳, 张国言, 董元杰. 不同来源农业废弃物堆肥进程与产品肥效研究. 水土保持学报, 35(4):349-360.
[17] 辛董董, 葛兰英, 张浩. 茶园施用豆粕发酵肥对土壤理化性质与茶叶品质的影响. 河南科技学院学报(自然科学版), 2021, 49(3):22-30.
[18] 鲍士旦. 土壤农化分析(第3版). 北京: 中国农业出版社, 2000.
[19] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景. 中国农业科学, 2013, 46(16):3324-3333.
doi: 10.3864/j.issn.0578-1752.2013.16.003
[20] 张永春, 汪吉东, 沈明星, 等. 长期不同施肥对太湖地区典型土壤酸化的影响. 土壤学报, 2010, 47(3):465-472.
[21] 袁金华, 徐仁扣. 生物质炭对酸性土壤改良作用的研究进展. 土壤, 2012, 44(4):541-547.
[22] 潘根兴, 张阿凤, 邹建文, 等. 农业废弃物生物黑炭转化还田作为低碳农业途径的探讨. 生态与农村环境学报, 2010, 26(4):394-400.
[23] 吴志丹, 尤志明, 江福英, 等. 生物黑炭对酸化茶园土壤的改良效果. 福建农业学报, 2012(2):167-172.
[24] 易杰祥, 吕亮雪, 刘国道. 土壤酸化和酸性土壤改良研究. 热带生物学报, 2006, 12(1):23-28.
[25] 徐扣仁, Coventry D R. 某些农业措施对土壤酸化的影响. 农业环境保护, 2002, 21(5):385-388.
[26] 鲁艳红, 廖育林, 聂军, 等. 我国南方红壤酸化问题及改良修复技术研究进展. 湖南农业科学, 2015(3):148-151.
[27] Lehmann J. A handful of carbon. Nature, 2007, 447(7141):143-144.
doi: 10.1038/447143a
[28] 王娇, 王鸿斌, 赵兴敏, 等. 添加秸秆对不同有机含量土壤酸度及缓冲性能的影响. 水土保持学报, 2020, 34(6):361-368.
[29] 王娟娟, 朱紫娟, 钱晓晴, 等. 减施化肥与不同有机肥配施对稻季土壤细菌群落结构的影响. 土壤, 2021, 53(5):983-990.
[30] 汪军, 王德建, 张刚. 太湖地区稻麦轮作体系下秸秆还田配施氮肥对水稻产量及经济效益的影响. 中国生态农业学报, 2011, 19(2):265-270.
[31] 郭晓彦, 宋晓华, 刘春增, 等. 紫云英翻压量和化肥用量对水稻生长、产量及经济效益的影响. 山地农业生物学报, 2014, 33(5):7-12.
[1] 张明发, 张胜, 滕凯, 陈前锋, 田明慧, 江智敏, 巢进, 菅攀锋, 邓小华. 湖南花垣烟区秸秆生物炭配施量对土壤pH及烤烟根系的影响[J]. 作物杂志, 2022, (6): 193–200
[2] 水建国, 孟赐福. 红壤种植花生施用石灰石粉和拌根瘤菌的效应[J]. 作物杂志, 1987, (1): 18–19
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!