作物杂志,2023, 第4期: 2230 doi: 10.16035/j.issn.1001-7283.2023.04.004
花芹1(), 林泉祥1, 宋远辉1, 孙家猛1, 张祖普2,3, 陈庆全1, 李金才1, 张海涛1()
Hua Qin1(), Lin Quanxiang1, Song Yuanhui1, Sun Jiameng1, Zhang Zupu2,3, Chen Qingquan1, Li Jincai1, Zhang Haitao1()
摘要:
利用突变体挖掘与稻米品质相关基因,有助于阐明与品质相关的淀粉和贮藏蛋白生物合成的调控机制,促进水稻优质育种。通过筛选中花11组织培养突变体库,获得具有粉质、垩白和皱缩外观胚乳的突变体cse(chalkinessandshrunkenendosperm),并进行籽粒表型鉴定和理化性质分析。通过F2群体分析cse遗传行为和目的基因的图位克隆,利用qRT-PCR分析基因的时空表达模式。与野生型相比,突变体的农艺性状和淀粉理化性质均有显著差异,突变体淀粉颗粒呈不规则球型,且相互间隙较大。遗传分析表明,突变体性状受单隐性核基因控制。借助图位克隆将候选基因定位在4号染色体长臂端Os4-14-8和Os4-15之间的40kb范围内。测序结果表明,定位区间内仅有一个编码TPR蛋白的候选基因LOC_Os04g55230发生了突变。第1个外显子处缺失3个碱基GGC,导致一个甘氨酸缺失,第14个外显子处存在1个碱基G替换成碱基A,导致精氨酸突变为赖氨酸。qRT-PCR结果表明,LOC_Os04g55230在授粉后14d的胚乳中表达量达到最大值。突变的LOC_Os04g55230为已报道基因OsFLO2/OsCNY8的新等位基因,但突变体与已知的OsFLO2突变体表型不完全相同,cse籽粒伴有皱缩外观,有效分蘖数、贮藏蛋白和脂肪酸含量等均显著增加。
[1] | Wei X, Jiao G, Lin H, et al. GRAIN INCOMPLETE FILLING 2 regulates grain filling and starch synthesis during rice caryopsis development. Journal of Integrative Plant Biology, 2017, 59(2):134-153. |
[2] | Hanashiro I, Itoh K, Kuratomi Y, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant Cell Physiology, 2008, 49(6):925- 933. |
[3] | Dinges J R, Colleoni C, Myers A M, et al. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiology, 2001, 125:1406-1418. |
[4] | Zhou H, Wang L, Liu G, et al. Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Science of the United States of America, 2016, 113 (45):12844-12849. |
[5] | Nayeon R, Chul Y, Cheon-Seok P, et al. Knockout of a starch synthase gene OsSSIIIa/Flo5 causes white-core floury endosperm in rice (Oryza sativa L.). Plant Cell Reports, 2007, 26(7):1083- 1095. |
[6] | She K C, Kusano H, Koizumi K, et al. A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality. Plant Cell, 2010, 22(10):3280-3294. |
[7] | Kiswara G, Lee J H, Hur Y J, et al. Genetic analysis and molecular mapping of low amylose gene du12(t) in rice (Oryza sativa L.). Theoretical and Applied Genetics, 2014, 127(1):51-57. |
[8] | Matsushima R, Maekawa M, Tomita K, et al. Amyloplast membrane protein SUBSTANDARD STARCH GRAIN6 controls starch grain size in rice endosperm. Plant Physiology, 2016, 170 (3):1445-1459. |
[9] | Long W H, Wang Y H, Zhu S S, et al. FLOURY-SHRUNKEN ENDOSPERM1 connects phospholipid metabolism and amyloplast development in rice. Plant Physiology, 2018, 177(2):698-712. |
[10] | Peng C, Wang Y H, Liu F, et al. FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm. Plant Journal, 2014, 77(6):917-930. |
[11] | Lei J, Teng X, Wang Y F, et al. Plastidic pyruvate dehydrogenase complex E 1 component subunit Alpha1 is involved in galactolipid biosynthesis required for armyloplast development in rice. Plant Biotechnology Journal, 2022, 20(3):437-453. |
[12] | Wang Y H, Liu F, Ren Y L, et al. GOLGI TRANSPORT 1B regulates protein export from endoplasmic reticulum in rice endosperm cells. Plant Cell, 2016, 28(11):2850-2865. |
[13] | Ren Y L, Wang Y H, Pan T, et al. GPA5 encodes a Rab5a effector required for post-Golgi trafficking of rice storage proteins. Plant Cell, 2020, 32(3):758-777. |
[14] | Zhu J P, Ren Y L, Wang Y L, et al. OsNHX5-mediated pH homeostasis is required for post-Golgi-trafficking of seed storage proteins in rice endosperm cells. BMC Plant Biology, 2019, 19 (1):295-307. |
[15] | Wang J, Chen Z C, Zhang Q, et al. The NAC transcription factors OsNAC20 and OsNAC26 regulate starch and storage protein synthesis. Plant Physiology, 2020, 184(4):1775-1791. |
[16] | Wu Y P, Pu C H, Lin H Y, et al. Three novel alleles of FLOURY ENDOSPERM2 (FLO2) confer dull grains with low amylose content in rice. Plant Science, 2015, 233:44-52. |
[17] | Teramura H, Kondo K, Suzuki M, et al. Aberrant endosperm formation caused by reduced production of major allergen proteins in a rice flo2 mutant that confers low-protein accumulation in grains. Plant Biotechnology, 2019, 36(2):85-90. |
[18] | 方鹏飞, 李三峰, 焦桂爱, 等. 水稻粉质胚乳突变体flo7的理化性质及基因定位. 中国水稻科学, 2014, 28(5):447-457. |
[19] | Zhang L, Qi Y Z, Wu M M, et al. Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT 5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. The Crop Journal, 2020, 9(2):282-296. |
[20] | 中华人民共和国农业部. 米质测定方法:NY 147-88. 北京: 中国标准出版社. 2002. |
[21] | 龙武华. 水稻粉质胚乳突变体flo8和fse的基因克隆及功能分析. 南京:南京农业大学, 2017. |
[22] | 张述伟, 宗营杰, 方春燕, 等. 蒽酮比色法快速测定大麦叶片中可溶性糖含量的优化. 食品研究与开发, 2020, 41(7):196- 200. |
[23] | 张斌. 稻米氨基酸含量的近红外定标模型的创建及应用. 杭州:浙江大学, 2010. |
[24] | 赵玲珑. PTST2基因调控水稻花粉和胚乳淀粉积累的功能解析.扬州:扬州大学, 2020. |
[25] | 于艳芳, 刘喜, 田云录, 等. 水稻粉质胚乳fse3突变体的表型分析及基因定位. 中国农业科学, 2018, 51(11):2023-2037. |
[26] | Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 1980, 8(19):4321- 4325. |
[27] | Sanguinetti C J, Dias N E, Simpson A J. Rapid silver staining and recover of PCR products separated on polyacrylamide gels. Biotechniques, 1994, 17(5):915-919. |
[28] | Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods, 2001, 25(4):402-408. |
[29] | Kihira M, Tanicuchi K, Kaneko C, et al. Arabidopsis thaliana FLO2 is involved in efficiency of photoassimilate translocation, which is associated with leaf growth and aging, yield of seeds and seed quality. Plant Cell Physiology, 2017, 58(3):440-450. |
[30] | Sato N, Kihira M, Matsushita R, et al. AtFLL2,a member of the FLO2 gene family, affects the enlargement of leaves at the vegetative stage and facilitates the regulation of carbon metabolism and flow. Bioscience Biotechnology and Biochemistry, 2020, 84 (12):2466-2475. |
[31] | 张大鹏. 稻米品质突变体库的构建及粉质胚乳垩白突变体(flo6)的基因定位. 杭州:浙江大学, 2012. |
[32] | Nishi A, Nakamura Y, Tanaka N, et al. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology, 2001, 127(2):459-472. |
[33] | Liabres S, Tsenkov M I, Macgowan S A, et al. Disease related single point mutations alter the global dynamics of a tetratricopeptide (TPR) α-solenoid domain. Journal of Structural Biology, 2020, 209(1):107405. |
[34] | Wei G, Yang H X, Xiong Z X, et al. TPR domain coding gene ST2 may be involved in regulating tillering and fertility in rice. Czech Journal of Genetics and Plant Breeding, 2021, 57(3):83-90. |
[35] | Myers A M, James M G, Lin Q, et al. Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell, 2011, 23(6):2331-2347. |
[36] | Kelly A A, Kalisch B, Hölzl G, et al. Synthesis and transfer of galactolipids in the chloroplast envelope membranes of Arabidopsis thaliana. Proceedings of the National Academy Science of the United States of America, 2016, 113(38):10714- 10719. |
[1] | 付梓平, 范昱, 赖弟利, 张凯旋, 朱剑锋, 李基光, 周美亮, 王俊珍. 脱支和反复湿热处理对苦荞抗性淀粉含量和理化特性的影响[J]. 作物杂志, 2023, (1): 5257 |
[2] | 侯乾,王万兴,李广存,熊兴耀. 马铃薯连作障碍研究进展[J]. 作物杂志, 2019, (6): 17 |
[3] | 何冰纾,钟雨越,乔永利,郭东伟. 水稻粉质胚乳突变体flo(t)的子粒性状及淀粉理化特性分析[J]. 作物杂志, 2017, (4): 6771 |
[4] | 田秋阳, 周鸿章, 鲁萍, 等. 外来杂草反枝苋对大豆根际土壤微生物碳源利用和土壤理化性质的影响[J]. 作物杂志, 2012, (2): 2430 |
[5] | 林蔚刚, 吴俊江, 董德健, 等. 阿根廷作物免耕体系的研究现状[J]. 作物杂志, 2007, (4): 8385 |
[6] | 江正东, 张湘晖. 无籽西瓜施用褐煤技术与效果研究[J]. 作物杂志, 2003, (2): 4042 |
[7] | 曾浙荣, 万超文, 朱遐龄, 等. 玉米子粒的结构、组成和利用[J]. 作物杂志, 1987, (4): 2627 |
|