作物杂志,2023, 第6期: 261269 doi: 10.16035/j.issn.1001-7283.2023.06.036
• 植物保护 • 上一篇
熊玉婷1(), 郑璐瑶1(), 贾雯淇1, 李曼1, 陈佳宁1, 李葵花1(), 高玉亮2()
Xiong Yuting1(), Zheng Luyao1(), Jia Wenqi1, Li Man1, Chen Jianing1, Li Kuihua1(), Gao Yuliang2()
摘要:
黄瓜枯萎病是严重影响黄瓜产量和品质的土传病害。从大棚土壤中分离出放线菌,对娄彻氏链霉菌(Streptomyces rochei)亲缘关系最近的G8菌株进行了黄瓜枯萎病菌的抑菌试验和大棚黄瓜枯萎病的防治试验。结果表明,从大棚黄瓜土壤中共分离出43个放线菌,其中31个属于链霉菌属;G8菌株可抑制黄瓜枯萎病菌丝生长,对大棚黄瓜枯萎病的防治效果达75.5%;基于16S rDNA和特异性引物PCR产物测序序列与NCBI-BLAST数据库比对,将G8菌株鉴定为娄彻氏链霉菌。
[1] | 张圣平, 苗晗, 薄凯, 等. “十三五”我国黄瓜遗传育种研究进展. 中国蔬菜, 2021, 386(4):16-26. |
[2] | 郭嘉华, 武兆昕, 李蕾, 等. 西芹腐根二次酮层物对黄瓜枯萎病的诱导抗性及其转录组学分析. 植物病理学报, 2022, 52(3):364-376. |
[3] | Jin X, Shi Y J, Wu F Z, et al. Intercropping of wheat changed cucumber rhizosphere bacterial community composition and inhibited cucumber Fusariuml wilt disease. Scientia Agricola, 2020, 77(5):1-9. |
[4] | 白雪, 张晓晓, 季苇芹, 等. 黄瓜细菌性茎枯萎病病原鉴定及温度对其致病力的影响. 植物保护, 2021, 47(4):28-37,65. |
[5] |
Wang Y, Zhang J, Sun Y, et al. Evaluating the potential value of natural product cuminic acid against plant pathogenic fungi in cucumber. Molecules, 2017, 22(11):1914.
doi: 10.3390/molecules22111914 |
[6] |
Hu J L, Lin X G, Wang J H, et al. Arbuscular mycorrhizal fungal inoculation enhances suppression of cucumber Fusarium wilt in greenhouse soils. Pedosphere, 2010, 20(5):586-593.
doi: 10.1016/S1002-0160(10)60048-3 |
[7] | 刘琴, 徐健, 刘怀阿, 等. 黄瓜内生放线菌SR-1102分离及对枯萎病菌拮抗活性. 扬州大学学报(农业与生命科学版), 2015, 36(2):83-88. |
[8] | Luo W J, Liu L D, Qi G F, et al. Embedding Bacillus velezensis NH-1 in microcapsules for biocontrol of cucumber Fusarium Wilt. Applied and Environmental Microbiology, 2019, 85(9):3128- 3118. |
[9] |
Raza W, Ling N, Zhang R, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology,2017, 37(2):202-212.
doi: 10.3109/07388551.2015.1130683 |
[10] |
Han L J, Wang Z Y, Li N, et al. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Applied Soil Ecology, 2019, 136(4):55-66.
doi: 10.1016/j.apsoil.2018.12.011 |
[11] |
Chen Y, Zhou D, Qi D, et al. Growth promotion and disease suppression ability of a Streptomyces sp. CB-75 from banana rhizosphere soil. Frontiers in Microbiology, 2017, 8:2704-2722.
doi: 10.3389/fmicb.2017.02704 |
[12] | Ara I. Antiviral activities of streptomycetes against tobacco mosaic virus(TMV)in Datura plant:evaluation of different organic compounds in their metabolites. African Journal of Biotechnology, 2012, 11(8):2130-2138. |
[13] |
Luo M, Chen Y, He J, et al. Identification of a new Talaromyces strain DYM25 isolated from the Yap Trench as a biocontrol agent against Fusarium wilt of cucumber. Microbiological Research, 2021, 251:126841.
doi: 10.1016/j.micres.2021.126841 |
[14] |
Barka E A, Vatsa P, Sanchez L, et al. Taxonomy, physiology, and natural products of Actinobacteria. Microbiology and Molecular Biology Reviews, 2016, 80(1):1-43.
doi: 10.1128/MMBR.00019-15 |
[15] |
兰成忠, 甘林, 代玉立, 等. 黄瓜枯萎病菌拮抗菌的筛选、鉴定和防效测定. 中国生物防治学报, 2023, 39(1):184-193.
doi: 10.16409/j.cnki.2095-039x.2023.02.006 |
[16] |
Chandrima B, Srimoyee B, Udita A, et al. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling,India. Scientific Reports, 2020, 10(1):15536.
doi: 10.1038/s41598-020-72439-z |
[17] |
Van Minh N, Woo E E, Kim J Y, et al. Antifungal Substances from Streptomyces sp. A 3265 Antagonistic to Plant Pathogenic Fungi. Mycobiology, 2015, 43(3):333-338.
doi: 10.5941/MYCO.2015.43.3.333 |
[18] |
Kim Y S, Lee I K, Yun B S. Antagonistic effect of Streptomyces sp. BS062 against Botrytis diseases. Mycobiology, 2015, 43(3):339-342.
doi: 10.5941/MYCO.2015.43.3.339 |
[19] | 罗文建, 杨凡, 史宣杰, 等. 黄瓜枯萎病拮抗菌的分离鉴定及其生物防效. 华中农业大学学报, 2018, 37(3):32-38. |
[20] |
Raza W, Ling N, Zhang R, et al. Success evaluation of the biological control of Fusarium wilts of cucumber, banana, and tomato since 2000 and future research strategies. Critical Reviews in Biotechnology,2016, 26(2):1-11.
doi: 10.1080/07388550500508644 |
[21] | 虞凡枫, 赵进, 孙铭悦, 等. 黄瓜枯萎病拮抗芽孢杆菌A7-3-14的筛选及鉴定. 北方园艺, 2022, 498(3):41-46. |
[22] |
石义妃, 耿佩冰, 吴皓, 等. 金黄垂直链霉菌DF06的分类鉴定及防病促生作用. 中国生物防治学报, 2023, 39(2):407-417.
doi: 10.16409/j.cnki.2095-039x.2023.02.011 |
[23] |
Wang L Y, Zhang Y F, Yang D Y, et al. Aureoverticillactam, a potent antifungal macrocyclic Lactam from Streptomyces aureoverticillatus HN6, Generates Calcium Dyshomeostasis- Induced Cell Apoptosis via the Phospholipase C Pathway in Fusarium oxysporum f. sp.cubense Race 4. Phytopathology, 2021, 111(11):2010-2022.
doi: 10.1094/PHYTO-12-20-0543-R |
[24] | 胡琴琴. 生防放线菌筛选及对西瓜连作障碍修复机制研究. 杨凌:西北农林科技大学, 2021. |
[25] | 李亚莉, 侯栋, 岳宏忠, 等. 黄瓜枯萎病拮抗菌Burkholderia gladioli L1-3的分离鉴定及防病促生效果. 中国蔬菜, 2022, 406(12):52-58. |
[26] | 赵帅, 田长彦, 史应武, 等. 黄瓜枯萎病生防菌HD-087产抗菌物质条件的优化及抑菌作用初探. 微生物学通报, 2013, 40(5):802-811. |
[27] |
Liu W, Wang J, Zhang H, et al. Transcriptome analysis of the production enhancement mechanism of antimicrobial lipopeptides of Streptomyces bikiniensis HD-087 by co-culture with Magnaporthe oryzae Guy11. Microbial Cell Factories, 2022, 21 (1):187.
doi: 10.1186/s12934-022-01913-2 |
[28] |
Qiong W, Ruiyan S, Mi N, et al. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. PLoS ONE, 2017, 12(6):e0179957.
doi: 10.1371/journal.pone.0179957 |
[29] |
Singh S, Balodi R. Bio-management of soil borne pathogens infesting cucumber (Cucumis sativus L.) under protected cultivation system. Biological Control, 2021, 157(10):104569.
doi: 10.1016/j.biocontrol.2021.104569 |
[30] |
Poudel B, Shterzer N, Sbehat Y, et al. Characterizing the chicken gut colonization ability of a diverse group of bacteria. Poultry Science, 2022, 101(11):102136.
doi: 10.1016/j.psj.2022.102136 |
[31] |
Won S J, Kwon J H, Kim D H, et al. The effect of Bacillus licheniformis MH 48 on control of foliar fungal diseases and growth promotion of Camellia oleifera seedlings in the coastal reclaimed land of Korea. Pathogens, 2019, 8(1):6.
doi: 10.3390/pathogens8010006 |
[32] |
Hanif A, Zhang F, Li P P, et al. Fengycin produced by Bacillus amyloliquefaciens FZB 42 inhibits Fusarium graminearum growth and mycotoxins biosynthesis. Toxins, 2019, 11(5):295.
doi: 10.3390/toxins11050295 |
[33] | 廖红东, 袁珊珊, 杨远柱, 等. 一株拮抗稻瘟病内生链霉菌OsiSh-10的筛选与鉴定. 湖南大学学报(自然科学版), 2015, 42(12):80-87. |
[34] | 陈国康, 陈世春, 肖崇刚, 等. 烟草根围土壤对主要烟草病害的拮抗放线菌株筛选及其鉴定. 西南大学学报(自然科学版), 2009, 31(12):30-34. |
[35] |
刘宇, 刘建华, 刘伟成, 等. 利迪链霉菌A02诱导番茄抗灰霉病作用机制研究——对植株防御酶系的影响. 华北农学报, 2007(2):152-155.
doi: 10.3321/j.issn:1000-7091.2007.02.037 |
[36] |
卢彩鸽, 刘伟成, 刘霆, 等. 利迪链霉菌A01活性代谢产物对甘蓝枯萎病菌的抑制作用及其机理. 中国农业科学, 2012, 45(18):3764-3772.
doi: 10.3864/j.issn.0578-1752.2012.18.009 |
[37] | 鲁妍璇, 曹毅, 李博雅, 等. 利迪链霉菌K2对灰霉病菌的抑菌效果及抑菌物质鉴定. 微生物学报, 2023, 63(5):1991-2006. |
[38] | 赵赛, 张维宏, 建嫄, 等. 拮抗菌Z-L-22不同剂型对番茄溃疡病的防治效果. 植物保护, 2016, 42(3):250-254. |
[39] | Gong Y, Liu J Q, Xu M J, et al. Antifungal volatile organic compounds from Streptomyces setonii WY 228 control black spot disease of sweet potato. Applied and Environmental Microbiology, 2022, 88(6):2317-2321. |
[40] | Lian Q, Zhang J, Gan L, et al. The Biocontrol Efficacy of Streptomyces pratensis LMM15 on Botrytis cinerea in Tomato. BioMed Research International, 2017, 2017:9486794. |
[41] |
Zhang J, Chen J, Hu L, et al. Antagonistic action of Streptomyces pratensis S 10 on Fusarium graminearum and its complete genome sequence. Environmental Microbiology, 2021, 23(4):1925-1940.
doi: 10.1111/1462-2920.15282 pmid: 33073508 |
[42] | 李立梅, 李鑫, 沈佳龙, 等. 杨树烂皮病生防链霉菌的筛选及鉴定. 植物保护学报, 2017, 44(1):137-144. |
[43] | 席娇, 徐腾起, 刘玉涛, 等. Streptomyces rochei D74菌剂对向日葵、列当及其根际微生物的影响. 微生物学报, 2023, 63(2):745-759. |
[44] | Kanini G S, Katsifas E A, Savvides A L, et al. Streptomyces rochei ACTA1551, an indigenous Greek isolate studied as a potential biocontrol agent against Fusarium oxysporum f.sp. lycopersici. BioMed Research International, 2013, 2013:387230. |
[45] | 王宁, 黄伟, 鲁致远, 等. 苹果树腐烂病生防链霉菌A144的鉴定及其代谢产物的抑菌活性. 西北农业学报, 2023, 32(3):440-449. |
[46] |
Al Raish S M, Saeed E E, Alyafei D M, et al. Evaluation of streptomycete actinobacterial isolates as biocontrol agents against royal poinciana stem canker disease caused by the fungal pathogen Neoscytalidium dimidiatum. Biological Control, 2021, 164:104783.
doi: 10.1016/j.biocontrol.2021.104783 |
[1] | 张亚辉,蒋继志,王蓓蓓,李颖,万安琪,沙海天. 三株拮抗菌对导致马铃薯晚疫病的致病疫霉的抑制作用比较[J]. 作物杂志, 2016, (4): 162166 |
[2] | 暴增海, 马桂珍, 王淑芳, 等. 海洋放线菌BM-2菌株对黄瓜的促生作用和诱导抗性研究[J]. 作物杂志, 2013, (5): 9498 |
[3] | 马桂珍, 暴增海, 夏振强, 等. 海洋放线菌对几种蔬菜病原菌抗菌作用的测定[J]. 作物杂志, 2009, (5): 3538 |
|