Crops ›› 2017, Vol. 33 ›› Issue (6): 37-44.doi: 10.16035/j.issn.1001-7283.2017.06.007

Previous Articles     Next Articles

Determining Blind Samples of Transgenic Maize and Transgenic Soybean

Li Lina,Jin Longguo,Xie Chuanxiao,Liu Changlin   

  1. Institute of Crop Sciences,Chinese Academy of Agricultural Sciences,Beijing 100081,China
  • Received:2017-07-03 Revised:2017-10-27 Online:2017-12-15 Published:2018-08-26
  • Contact: Changlin Liu

Abstract:

Genetically modified crops developed rapidly in the world. China imports a large amount of products of genetically modified crops every year, and has put billions of money in genetically modified crops research. China also has established regulations for genetically modified crops and their products. Simple and reliable methods for detecting transgenic ingredients are very urgent in China. In this study, according to the detection protocols of genetically modified crops published by the Ministry of Agriculture of the People’s Republic of China, blind samples of soybean (W160982 and W160984) and maize (W160983 and W160985) were detected for transgenic ingredients using the PCR technology. As a result, W160983, W160985, W160982, and W160984 are the standard sample MON89034, TC1507, GTS40-3-2, and BPS-CV127-9, respectively. The results of the blind samples were validated by sequence alignment of the PCR product. This study provided an experimental protocol for the detection of transgenic maize and soybean.

Key words: Transgenic maize, Transgenic soybean, Blind sample, Polymerase chain reaction

Table 1

PCR primers for detecting transgenic ingredients in maize and soybean"

靶标Target 名称Name 序列(5'→3')Sequence 产物大小Amplicon size (bp) 作物Crop 参考文献Reference
zSSIIb zSSIIb-F CTCCCAATCCTTTGACATCTGC 151 玉米 [9]
zSSIIb-R TCGATTTCTCTCTTGGTGACAGG
MON88017 MON88017-F TTGTCCTGAACCCCTAAAATCC 199 玉米 [10]
MON88017-R CCCGGACATGAAGCCATTTA
GA21 GA21-F CTTATCGTTATGCTATTTGCAACTT 112 玉米 [11]
GA21-R TGGCTCGCGATCCTCCTCGCGTTTC
MIR604 MIR604-F TCGCGCGCGGTGTCATCTATG 142 玉米 [12]
MIR604-R CGCGACACACCTCGTTAGTTAA
MON87460 MON87460-F ATCCACCTGTCAGCTCAAGTT 368
玉米 [13]
MON87460-R GGTATGTATATAGTGGCGATG
MON89034 MON89034-F GCTGCTACTACTATCAAGCCAATA 207 玉米 [14]
MON89034-R TGCTTTCGCCTATAAATACGAC
MIR162 MIR162-F CCCGGGTCTAGACAATTCAGT 97 玉米 [15]
MIR162-R GCCCAGTAAAACAACTACCACAAG
MON810 MON810-F ACCTCGAGATTTACCTGATCCG 326 玉米 [16]
MON810-R TGCTGCAGGTGGTCTTACATC
MON863 MON863-F GCACTCAAAGACCTGGCGAATGA 411 玉米 [17]
MON863-R CCATCTTTGGGACCACTGTCG
Bt176 Bt176-F TTCAAGCACGGGAACTGGC 270 玉米 [18]
Bt176-R GAGCGAGAACACGAGAAGAGG
DAS-40278-9 DAS-40278-9-F CCATTCAGGAGACCTCGCTTG 238 玉米 [19]
DAS-40278-9-R CGAGCTTCAATCACTTTATGG
TC1507 TC1507-F CTTGTGGTGTTTGTGGCTCT 279 玉米 [20]
TC1507-R TGGCTCCTCCTTCGTATGT
3272 3272-F CTGGCCGATAAACTGACCAT 221 玉米 [21]
3272-R CCAAACGTAAAACGGCTTGT
59122 59122-F CGTCCGCAATGTGTTATTAAG 273 玉米 [22]
59122-R TGACCAAGTGTCCACTTGAC
NK603 NK603-F ATGAATGACCTCGAGTAATCTTGTTAA 108 玉米 [23]
NK603-R AAGAGATAACAGGATCCACTCAAACACT
Lectin Lec-1672F GGGTGAGGATAGGGTTCTCTG 210 大豆 [24]
Lec-1881R GCGATCGAGTAGTGAGAGTCG
GTS40-3-2 GTS40-3-2-F TTCAAACCCTTCAATTTAACCGAT 370 大豆 [25]
GTS40-3-2-R AAGGATAGTGGGATTGTGCGTC
MON89788 MON89788-F CTGCTCCACTCTTCCTTT 223 大豆 [26]
MON89788-R AGACTCTGTACCCTGACCT
MON87701 MON87701-MF GCACGCTTAGTGTGTGTGTCAAAC 150 大豆 [27]
靶标Target 名称Name 序列(5'→3') Sequence 产物大小Amplicon size (bp) 作物Crop 参考文献Reference
MON87701-MR GGATCCGTCGACCTGCAGTTAAC
MON87705 MON87705-F CGCCAAATCGTGAAGTTTCTCATCT 318 大豆 [28]
MON87705-R CAGTGATAACAACACCCTGAGTCT
MON87708 MON87708-F CCATCATACTCATTGCTGATCCA 233 大豆 [29]
MON87708-R AGCCAATCAATCTCAGAACTGTC
MON87769 MON87769-F CCGGACATGAAGCCATTTAC 298 大豆 [30]
MON87769-R TCCTTGGAGGTCGTCTCATT
BPS-CV127-9 CV127-F CCTTCGCCGTTTAGTGTATAGG 238 大豆 [31]
CV127-R AGCAGGTTCGTTTAAGGATGAA
305423 305423-F CGTCAGGAATAAAGGAAGTACAGTA 235 大豆 [32]
305423-R GCCCTAAAGGATGCGTATAGAGT
356043 356043-F CTTTTGCCCGAGGTCGTTAG 145 大豆 [33]
356043-R GCCCTTTGGTCTTCTGAGACTG

Fig.1

Gel electrophoresis detection of genome DNA extracted from transgenic maize and transgenic soybean"

Fig.2

Detection of transgenic ingredients in maize M: marker DL2000; B: blank control; N: negative control, the same below. Ⅰ: a-e. detections of MON8801, GA21, MIR604, MON87460, MON89034 transgenic ingredients; Ⅱ: a-e. detections of MIR162, MON810, MON863, Bt176, DAS40278-9 transgenic ingredients; Ⅲ: a-d. detections of TC1507, 3272, 59122, NK603 transgenic ingredients.1,3,5,7,9: W160985, 2,4,6,8,10: W160983"

Fig.3

Detections of transgenic ingredients in soybean Ⅰ: a-e.detections of GTS40-3-2, MON89788, MON87701, MON87705, MON87708 transgenic ingredients;Ⅱ: a-d.detections of MON87769, BPS-CV127-9, 305423, 356043 transgenic ingredients.1,3,5,7,9:W160982 samples, 2,4,6,8,10:W160984 samples"

Fig.4

Detections of transgenic ingredients and the internal reference gene zSSIIb in maize S: positive control (S1: TC1507, S2: MON89034), 1:W160985, 2:W160983.Ⅰ: maize endogenous gene (zSSIIb) amplification; Ⅱ: confirmation of target gene TC1507; Ⅲ: confirmation of target gene MON89034"

Fig.5

Detections of transgenic ingredients and the internal reference gene Lectin in soybean S: positive control (S1: GTS40-3-2, S2: BPS-CV127-9). 1. W160982, 2.W160984. Ⅰ: soybean endogenous gene (Lectin) amplification; Ⅱ: confirmation of target gene BPS-CV127-9; Ⅲ: confirmation of target gene GTS40-3-2"

Fig.6

Sequence comparison The box indicates the primer sequence.Ⅰ: the sequence comparison of MON89034 and W160983; Ⅱ: the sequence comparison of TC1507 and W160985; Ⅲ: the sequence comparison of GTS40-3-2 and W160982; Ⅳ: the sequence comparison of BPS-CV127-9 and W160984"

[1] James C . 2016年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2017,37(4):1-8.
[2] James C . 2015年全球生物技术/转基因作物商业化发展态势. 中国生物工程杂志, 2016,36(4):1-11.
[3] 姜天海 . 全球转基因种植面积再创历史新高.科学新闻, 2017(5):75-77.
[4] 沈平, 章秋艳, 林友华 , 等. 推进我国转基因玉米产业化的思考. 中国生物工程杂志, 2016,36(4):24-29.
doi: 10.13523/j.cb.20160404
[5] 李楠 . 转基因植物基因漂移及生态风险研究的文献计量学分析. 江苏农业科学, 2015,43(12):62-67.
[6] 郭建英, 万方浩, 韩召军 . 转基因植物的生态安全性风险. 中国生态农业学报, 2008,16(2):515-522.
[7] 付仲文 . 中国农业转基因生物安全管理. 转基因生物与环境国际研讨会, 2004.
[8] 熊建文, 彭端, 韦剑锋 . 转基因玉米研究与应用进展. 广东农业科学, 2012,39(6):27-29.
doi: 10.3969/j.issn.1004-874X.2012.06.010
[9] GB/T 1861-3-2012 B/T 1861-3-2012.转基因植物及其产品成分检测玉米内标准基因定性PCR方法.北京: 中国标准出版社, 2012.
[10] GB/T 1485-15-2010 B/T 1485-15-2010.转基因植物及其产品成分检测抗虫耐除草剂玉米MON88017及其衍生品种定性PCR方法.北京: 中国标准出版社, 2010.
[11] GB/T 869-12-2007 B/T 869-12-2007.转基因植物及其产品成分检测耐除草剂玉米GA21及其衍生品种定性PCR方法.北京: 中国标准出版社, 2007.
[12] GB/T 1485-16-2010 B/T 1485-16-2010.转基因植物及其产品成分检测抗虫玉米MIR604及其衍生品种定性PCR方法.北京: 中国标准出版社, 2010.
[13] GB/T 2031-5-2013 B/T 2031-5-2013.转基因植物及其产品成分检测耐旱玉米MON87460及其衍生品种定性PCR方法.北京: 中国标准出版社, 2013.
[14] GB/T 1861-4-2012 B/T 1861-4-2012.转基因植物及其产品成分检测抗虫玉米MON89034及其衍生品种定性PCR方法.北京: 中国标准出版社, 2012.
[15] GB/T 2031-6-2013 B/T 2031-6-2013.转基因植物及其产品成分检测抗虫玉米MIR162及其衍生品种定性PCR方法.北京: 中国标准出版社, 2013.
[16] GB/T 2122-16-2014 B/T 2122-16-2014.转基因植物及其产品成分检测抗虫玉米MON810及其衍生品种定性PCR方法.北京: 中国标准出版社, 2014.
[17] GB/T 869-10-2007 B/T 869-10-2007.转基因植物及其产品成分检测抗虫玉米MON863及其衍生品种定性PCR方法.北京: 中国标准出版社, 2007.
[18] GB/T 2122-15-2014 B/T 2122-15-2014.转基因植物及其产品成分检测抗虫和耐除草剂玉米Bt176及其衍生品种定性PCR方法.北京: 中国标准出版社, 2014.
[19] GB/T 2122-9-2014 B/T 2122-9-2014.转基因植物及其产品成分检测耐除草剂玉米DAS-40278-9及其衍生品种定性PCR方法.北京: 中国标准出版社, 2014.
[20] GB/T 869-7-2007 869-7-2007.转基因植物及其产品成分检测抗虫和耐除草剂玉米TC1507及其衍生品种定性PCR方法.北京: 中国标准出版社, 2007.
[21] GB/T 2031-13-2013 B/T 2031-13-2013.转基因植物及其产品成分检测转淀粉酶基因玉米3272及其衍生品种定性PCR方法.北京: 中国标准出版社, 2013.
[22] GB/T 1485-9-2010 B/T 1485-9-2010.转基因植物及其产品成分检测抗虫耐除草剂玉米59122及其衍生品种定性PCR方法.北京: 中国标准出版社, 2010.
[23] GB/T 869-13-2007 B/T 869-13-2007.转基因植物及其产品成分检测耐除草剂玉米NK603及其衍生品种定性PCR方法.北京: 中国标准出版社, 2007.
[24] GB/T 2031-8-2013 B/T 2031-8-2013.转基因植物及其产品成分检测大豆内标准基因定性PCR方法.北京: 中国标准出版社, 2013.
[25] GB/T 1861-2-2012 B/T 1861-2-2012.转基因植物及其产品成分检测耐除草剂大豆GTS 40-3-2及其衍生品种定性PCR方法.北京: 中国标准出版社, 2012.
[26] GB/T 1485-6-2010 B/T 1485-6-2010.转基因植物及其产品成分检测耐除草剂大豆MON89788及其衍生品种定性PCR方法.北京: 中国标准出版社, 2010.
[27] GB/T 2031-8-2013 B/T 2031-8-2013.农业部2259号公告-7-2015转基因植物及其产品成分检测抗虫大豆MON87701及其衍生品种定性PCR方法.北京: 中国标准出版社, 2013.
[28] GB/T 2122-4-2014 B/T 2122-4-2014.转基因植物及其产品成分检测耐除草剂和品质改良大豆MON87705及其衍生品种定性PCR方法.北京: 中国标准出版社, 2014.
[29] GB/T 2259-6-2015 B/T 2259-6-2015.转基因植物及其产品成分检测耐除草剂大豆MON87708及其衍生品种定性PCR方法.北京: 中国标准出版社, 2015.
[30] GB/T 2122-5-2014 B/T 2122-5-2014.转基因植物及其产品成分检测品质改良大豆MON87769及其衍生品种定性PCR方法.北京: 中国标准出版社, 2014.
[31] GB/T 1782-5-2012 B/T 1782-5-2012.转基因植物及其产品成分检测耐除草剂大豆CV127及其衍生品种定性PCR方法.北京: 中国标准出版社, 2012.
[32] GB/T 1782-4-2012 B/T 1782-4-2012.转基因植物及其产品成分检测高油酸大豆305423及其衍生品种定性PCR方法.北京: 中国标准出版社, 2012.
[33] GB/T 1782-1-2012 B/T 1782-1-2012.转基因植物及其产品成分检测耐除草剂大豆356043及其衍生品种定性PCR方法.北京: 中国标准出版社, 2012.
[34] 李荣华, 夏岩石, 刘顺枝 , 等. 改进的CTAB提取植物DNA方法. 实验室研究与探索, 2009,28(9):14-16.
doi: 10.3969/j.issn.1006-7167.2009.09.005
[35] GB/T 3576-2013 B/T 3576-2013.转基因成分检测大豆PCR-DHPLC检测方法.北京: 中国标准出版社, 2013.
[1] Cui Guo,Wei Zhang,Guirong Yu,Zhengfu Zhou,Liang Li,Shuai Feng,Ming Chen,Jin Wang. Analysis of the Flanking Sequence and Event-Specific Detection of Transgenic G2-EPSPS Line of Maize [J]. Crops, 2016, 32(1): 69-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .