Crops ›› 2018, Vol. 34 ›› Issue (5): 54-62.doi: 10.16035/j.issn.1001-7283.2018.05.009

Previous Articles     Next Articles

Identification and Expression Analysis of the Whole Glutathione S-Transferase Genome Family in Aegilops tauschii under Abiotic Stress

Ma Jianhui,Zhang Wenli,Gao Xiaolong,Zhang Daijing,Jiang Lina,Zhai Yanyu,Shao Yun,Li Chunxi   

  1. College of Life Sciences, Henan Normal University, Xinxiang 453007, Henan, China
  • Received:2018-03-08 Revised:2018-04-20 Online:2018-10-15 Published:2018-10-12
  • Contact: Chunxi Li

Abstract:

Glutathione S-transferase (GST) is a multifunctional protease which involves in the regulation process of many abiotic stresses (drought, salt, low temperature, heavy metals) in plants. Aegilops tanschii is the donor of D genome for hexaploid wheat (Triticum aestivum, AABBDD), and the study on GST genome family in Aegilops tanschii (DD) will facilitate the further study of GST in hexaploid wheat. In this study, 114 GST genes from Aegilops tanschii were selected and classified into 6 subfamilies. Gene duplication analysis found that four pairs GST genes had been duplicated and they belonged to purify selection. The expression levels of some GST genes under environmental stress found that eight GST genes were highly expressed in root under drought and salt stress by qRT-PCR assay, in which three GST genes were up-regulated significantly responding to low temperature in root and leaf. This suggested there was a difference in the expression of GSTs in Aegilops tauschii responding to abiotic stress in root and leaf.

Key words: Aegilops tauschii, Glutathione S-transferase, Genome-wide screening, Abiotic stress

Table 1

The primer and sequences for qRT-PCR"

基因Gene 上游引物(5′-3′) Forward primer 下游引物(5′-3′) Reverse primer
AEGTA43277 GACGAGGTCTGGGCTTAT GCTTGTCATCAATGTAGGCG
AEGTA19581 GCGATGAAGCCCGTCCTGT TTCCACTCCACCGCCCTGT
AEGTA31937 ACACCGACGAGTCCAATA GGAAGAAAGGTCCATCAC
AEGTA27563 CGACCTCACCCATTTCTCC TCCCACCATGCCTTTACG
AEGTA27835 GGACCTTGGGCTTGGA CTACTCTGCTTTCTTTCGG
AEGTA15985 TCCGTGTCGTGTCTGCG CTCCCTCTCACACACCCACA
AEGTA32578 ACACCGAATCCTGAAACC CTCATCACCAACAACCTCC
AEGTA07316 GCCTACTATGCCGCCAAGA GAAGCGACTTGCCTCTGAC
Actin ACCTTCAGTTGCCCAGCAAT CAGAGTCAAGCACAATACCAGTTG

Table 2

Details of GST genes in Aegilops tauschii"

基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
AEGTA13657 390 5.79 14 719.93 GST-C AEGTA25963 372 5.05 13 533.33 GST-N
AEGTA13796 609 8.32 22 678.94 GST-C AEGTA25638 657 5.52 24 109.04 GST-N
AEGTA17736 2196 6.03 80 584.69 GST-C AEGTA25554 444 5.59 16 200.62 GST-N
AEGTA42620 960 9.49 35 732.50 GST-C AEGTA25408 609 5.70 21 048.37 GST-N
AEGTA32322 672 5.98 25 554.08 GST-C AEGTA23490 384 9.10 13 884.20 GST-N
AEGTA31936 1 203 8.26 45 449.39 GST-C AEGTA21507 705 5.48 25 157.07 GST-N
AEGTA29370 2 247 7.21 84 666.01 GST-C AEGTA20866 690 5.46 25 911.98 GST-N
AEGTA29002 642 5.73 24 116.71 GST-C AEGTA20545 501 9.69 19 060.96 GST-N
AEGTA27813 378 8.60 14 194.45 GST-C AEGTA19679 693 4.95 24 756.53 GST-N
AEGTA26775 639 5.58 23 948.80 GST-C AEGTA19581 642 5.54 23 959.65 GST-N
AEGTA26086 741 5.80 26 559.98 GST-C AEGTA18293 741 8.32 27 648.02 GST-N
AEGTA04558 813 6.36 29 861.92 GST-N AEGTA18074 477 5.78 17 388.99 GST-N
AEGTA05063 702 5.20 25 652.54 GST-N AEGTA01785 1 815 6.28 67 887.41 GST-N,GST-C
AEGTA05065 708 5.02 25 716.41 GST-N AEGTA06186 663 5.44 25 070.80 GST-N,GST-C
AEGTA06172 759 5.40 28 974.13 GST-N AEGTA06717 804 5.34 31 072.37 GST-N,GST-C
AEGTA07316 654 4.61 23 214.00 GST-N AEGTA07317 693 5.86 25 879.92 GST-N,GST-C
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
基因
Gene
CDS 长度
CDS length (bp)
等电点
pI
相对分子质量
Mw (Da)
结构域
Domain
AEGTA09722 705 5.30 25 149.91 GST-N AEGTA08779 711 8.09 26 568.83 GST-N,GST-C
AEGTA09973 681 5.71 25 328.09 GST-N AEGTA08830 651 5.90 24 455.20 GST-N,GST-C
AEGTA10110 765 5.33 28 262.30 GST-N AEGTA09230 666 5.31 24 986.57 GST-N,GST-C
AEGTA10138 708 5.53 25 204.16 GST-N AEGTA09762 672 6.25 25 398.78 GST-N,GST-C
AEGTA10411 627 5.40 22 926.60 GST-N AEGTA09817 546 6.05 20 564.77 GST-N,GST-C
AEGTA11603 747 5.16 27 138.48 GST-N AEGTA10438 669 5.41 23 999.86 GST-N,GST-C
AEGTA11604 1 092 6.32 39 789.49 GST-N AEGTA11494 765 7.65 28 670.37 GST-N,GST-C
AEGTA14428 633 9.59 22 899.47 GST-N AEGTA12447 909 9.08 33 467.91 GST-N,GST-C
AEGTA15671 699 5.66 25 728.59 GST-N AEGTA12899 690 5.28 25 830.90 GST-N,GST-C
AEGTA16349 627 5.62 23 165.92 GST-N AEGTA13799 648 5.38 24 132.08 GST-N,GST-C
AEGTA16477 708 5.07 25 769.76 GST-N AEGTA14055 648 5.04 24 629.13 GST-N,GST-C
AEGTA17396 501 5.40 18 216.14 GST-N AEGTA16442 603 5.99 22 114.72 GST-N,GST-C
AEGTA19882 723 5.66 26 175.10 GST-N AEGTA17533 729 4.74 26 596.62 GST-N,GST-C
AEGTA43770 714 5.09 24 973.69 GST-N AEGTA17535 663 4.96 24 132.84 GST-N,GST-C
AEGTA43057 711 5.30 26 382.24 GST-N AEGTA15985 1 033 8.37 37 089.78 GST-N,GST-C
AEGTA42860 711 5.74 26 027.62 GST-N AEGTA43277 705 6.45 25 623.80 GST-N,GST-C
AEGTA33169 345 6.40 12 739.92 GST-N AEGTA32560 654 5.61 24 039.74 GST-N,GST-C
AEGTA32907 702 5.22 25 195.97 GST-N AEGTA32323 681 5.98 24 942.60 GST-N,GST-C
AEGTA32578 729 9.05 27 186.61 GST-N AEGTA32272 1 242 6.18 46 835.95 GST-N,GST-C
AEGTA32561 675 5.96 24 978.81 GST-N AEGTA31937 837 5.38 31 118.60 GST-N,GST-C
AEGTA32163 714 5.91 25 910.74 GST-N AEGTA31887 699 5.91 26 142.34 GST-N,GST-C
AEGTA31981 666 5.41 24 879.73 GST-N AEGTA30949 789 6.14 29 087.61 GST-N,GST-C
AEGTA31768 621 5.36 22 760.86 GST-N AEGTA30918 642 5.78 23 465.08 GST-N,GST-C
AEGTA31691 708 5.45 25 312.46 GST-N AEGTA30353 693 5.59 24 828.77 GST-N,GST-C
AEGTA31477 708 5.88 25 038.75 GST-N AEGTA30352 693 5.25 24 817.67 GST-N,GST-C
AEGTA31124 1 062 5.88 38 993.78 GST-N AEGTA30165 696 6.00 25 764.75 GST-N,GST-C
AEGTA30884 699 5.23 25 566.66 GST-N AEGTA28857 675 6.39 25 447.57 GST-N,GST-C
AEGTA30541 720 4.93 25 819.79 GST-N AEGTA28363 696 5.53 25 699.85 GST-N,GST-C
AEGTA30252 669 6.34 25 011.77 GST-N AEGTA27835 669 5.30 24 444.14 GST-N,GST-C
AEGTA29491 612 5.28 23 444.87 GST-N AEGTA27568 651 5.37 24 521.99 GST-N,GST-C
AEGTA29000 702 7.67 25 567.69 GST-N AEGTA27563 669 6.17 24 687.63 GST-N,GST-C
AEGTA28917 693 5.90 25 284.30 GST-N AEGTA27020 726 6.71 26 315.23 GST-N,GST-C
AEGTA28502 726 5.32 25 719.43 GST-N AEGTA26917 762 6.46 28 859.70 GST-N,GST-C
AEGTA28473 798 9.22 31 126.08 GST-N AEGTA26896 675 5.31 24 979.85 GST-N,GST-C
AEGTA27374 663 5.00 25 687.24 GST-N AEGTA26875 732 5.01 26 411.51 GST-N,GST-C
AEGTA27001 834 8.54 30 651.56 GST-N AEGTA26054 660 5.99 25 001.99 GST-N,GST-C
AEGTA26996 711 5.16 25 507.27 GST-N AEGTA25446 678 5.22 25 907.45 GST-N,GST-C
AEGTA26995 708 6.13 26 018.01 GST-N AEGTA21179 834 5.69 30 222.34 GST-N,GST-C
AEGTA26994 711 5.57 25 309.11 GST-N AEGTA20148 657 5.45 24 738.36 GST-N,GST-C
AEGTA26080 786 5.57 29 366.79 GST-N AEGTA18987 690 5.51 25 070.84 GST-N,GST-C
AEGTA25964 714 5.68 26 104.21 GST-N AEGTA18354 702 5.40 26 076.15 GST-N,GST-C

Fig.1

Phylogenetic tree of GST genes"

Table 3

Duplication analysis of GST genes"

基因Gene 同义突变频率Ks 非同义突变频率Ka Ka/Ks 纯化选择Purify selection 复制时间(Mya)
AEGTA30352-30353 0.1243 0.0217 0.1746 95
AEGTA28363-31887 0.4179 0.1055 0.2525 32
AEGTA20866-28917 0.6575 0.2023 0.3077 50
AEGTA26896-27835 0.2628 0.1189 0.4524 20

Fig.2

The expression pattern analysis of GST genes under abiotic stress"

[1] Sies H . Glutathione and its role in cellular functions. Free Radical Biology & Medicine, 1999,27(9):916-921.
[2] Edwards R, Dixon D P, Walbot V . Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science, 2000,5(5):193-198.
doi: 10.1016/S1360-1385(00)01601-0
[3] Öztetik E . A tale of plant glutathione S-transferases:Since 1970. Botanical Review, 2008,74(3):419-437.
doi: 10.1007/s12229-008-9013-9
[4] Cummins I, Dixon D P, Freitag-Pohl S , et al. Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metabolism Reviews, 2011,43(2):266-280.
doi: 10.3109/03602532.2011.552910
[5] Marrs K A . The functions and regulation of glutathione S-transferases in plants. Annual Review of Plant Physiology & Plant Molecular Biology, 1996,47(1):127-158.
[6] Sheehan D, Meade G, Foley V M . Structure,function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochemical Journal, 2001,360(1):1-16.
doi: 10.1042/bj3600001
[7] Dixon D P, Lapthorn A, Edwards R . Plant glutathione transferases. Genome Biology, 2002,401(3):169-186.
[8] McGonigle B, Keeler S J, Lau S M C , et al. A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiology, 2000,124(3):1105-1120.
doi: 10.1104/pp.124.3.1105
[9] Soranzo N, Gorla M S, Mizzi L , et al. Organisation and structural evolution of the rice glutathione S-transferase gene family. Molecular Genetics and Genomics, 2004,271(5):511-521.
doi: 10.1007/s00438-004-1006-8
[10] 江董丽, 才华, 柏锡 , 等. 大豆GST基因家族全基因组筛选、分类和表达. 分子植物育种, 2013,4(5):465-475.
[11] 李晓玉, 江海波, 江海洋 , 等. 玉米全基因组谷胱苷肽-S-转移酶基因家族的分析. 安徽农业大学学报, 2013,40(3):350-356.
[12] Wu J, Cramer C L, Hatzios K K . Characterization of two cDNAs encoding glutathione S-transferases in rice and induction of their transcripts by the herbicide safener fenclorim. Physiologia Plantarum, 1999,105(1):102-108.
doi: 10.1034/j.1399-3054.1999.105116.x
[13] Moons A . Osgstu3 and Osgtu4,encoding tau class glutathione S-transferases,are heavy metal and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Letters, 2003,553(3):427-432.
doi: 10.1016/S0014-5793(03)01077-9
[14] 李永生, 方永丰, 李玥 , 等. 玉米逆境响应基因ZmGST23克隆和表达分析. 农业生物技术学报, 2016,24(5):667-677.
[15] Wang Z Y, Cai H, Bai X , et al. Isolation of GsGST19 from Glycine soja and analysis of Saline-Alkaline tolerance for transgenic Medicago sativa. Acta Agronomica Sinica, 2012,38(6):971-979.
[16] 韩少怀, 李佳佳, 张璟曜 , 等. 大豆GmGSTl2基因的克隆及表达分析. 大豆科学, 2015(5):782-788.
[17] Rezaei M K, Shobbar Z S, Shahbazi M , et al. Glutathione S-transferase (GST) family in barley:identification of members,enzyme activity,and gene expression pattern. Journal of Plant Physiology, 2013,170(14):1277-1284.
doi: 10.1016/j.jplph.2013.04.005
[18] Williamson G, Beverley M C . Wheat glutathione S-transferase:purification and properties. Journal of Cereal Science, 1988,8(2):155-163.
doi: 10.1016/S0733-5210(88)80026-2
[19] Mauch F, Hertig C, Rebmann G , et al. A wheat glutathione-S-transferase gene with transposon-like sequences in the promoter region. Plant Molecular Biology, 1991,16(6):1089-1091.
doi: 10.1007/BF00016083
[20] 吴金华, 张西平, 胡言光 , 等. 小麦抗白粉病相关基因GST克隆与表达. 西北植物学报, 2013(1):34-38.
[21] Dixon D, Cole D J, Edwards R . Characterisation of multiple glutathione transferases containing the GST I subunit with activities toward herbicide substrates in maize (Zea mays). Pest Management Science, 1997,50(1):72-82.
doi: 10.1002/(SICI)1096-9063(199705)50:1<>1.0.CO;2-C
[22] Huala E, Dickerman A W, Garcia-Hernandez M , et al. The Arabidopsis information resource (TAIR):a comprehensive database and web-based information retrieval,analysis,and visualization system for a model plant. Nucleic Acids Research, 2001,29(1):102-105.
doi: 10.1093/nar/29.1.102
[23] Finn R D, Mistry J, Schuster-Böckler B , et al. Pfam:clans,web tools and services. Nucleic Acids Research, 2006,34(s1):247-251.
doi: 10.1093/nar/gkj149
[24] Letunic I, Doerks T, Bork P . SMART 6:recent updates and new developments. Nucleic Acids Research, 2009,37(s1):229-232.
[25] Suyama M, Torrents D, Bork P . PAL2NAL:robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 2006,34(s2):609-612.
doi: 10.1093/nar/gkl315
[26] Gaut B S, Doebley J F . DNA sequence evidence for the segmental allotetraploid origin of maize. Proceedings of the National Academy of Sciences of the United States of America, 1997,94(13):6809-6814.
doi: 10.1073/pnas.94.13.6809
[27] Peng X, Zhao Y, Cao J , et al. CCCH-type zinc finger family in maize:genome-wide identification,classification and expression profiling under abscisic acid and drought treatments. PloS One, 2012,7(7):e40120.
doi: 10.1371/journal.pone.0040120
[28] Frova C . The plant glutathione transferase gene family:genomic structure,functions,expression and evolution. Physiologia Plantarum, 2003,119(4):469-479.
doi: 10.1046/j.1399-3054.2003.00183.x
[29] 张雪, 陶磊, 乔晟 , 等. 谷胱甘肽转移酶在植物抵抗非生物胁迫方面的角色. 中国生物工程杂志, 2017,37(3):92-98.
[30] Wagner U, Edwards R, Dixon D P , et al. Probing the diversity of the Arabidopsis glutathione S-transferase gene family. Plant Molecular Biology, 2002,49(5):515-532.
doi: 10.1023/A:1015557300450
[31] 戚元成, 张世敏, 王丽萍 , 等. 谷胱甘肽转移酶基因过量表达能加速盐胁迫下转基因拟南芥的生长. 植物生理与分子生物学学报, 2004,30(5):517-522.
[32] Liu D, Liu Y, Rao J , et al. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Molecular Biology, 2013,47(4):515-523.
doi: 10.1134/S0026893313040109
[33] Ji W, Zhu Y, Li Y , et al. Over-expression of a glutathione S-transferase gene,GsGST,from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnology Letters, 2010,32(8):1173-1179.
doi: 10.1007/s10529-010-0269-x
[34] George S, Venkataraman G, Parida A . A chloroplast-localized and auxin-induced glutathione S-transferase from phreatophyte Prosopis juliflora confer drought tolerance on tobacco. Journal of Plant Physiology, 2010,167(4):311-318.
doi: 10.1016/j.jplph.2009.09.004
[35] Xu J, Xing X J, Tian Y S , et al. Transgenic Arabidopsis plants expressing tomato glutathione S-transferase showed enhanced resistance to salt and drought stress. PloS One, 2015,10(9):e0136960.
doi: 10.1371/journal.pone.0136960
[36] Yang G, Xu Z, Peng S , et al. In planta characterization of a tau class glutathione S-transferase gene from Juglans regia (JrGSTTau1) involved in chilling tolerance. Plant Cell Reports, 2016,35(3):681-692.
doi: 10.1007/s00299-015-1912-8
[37] Zhao J, Zhang S, Yang T , et al. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms. Physiologia Plantarum, 2015,154(3):381-394.
doi: 10.1111/ppl.2015.154.issue-3
[38] Le Martret B, Poage M, Shiel K , et al. Tobacco chloroplast transformants expressing genes encoding dehydroascorbate reductase,glutathione reductase,and glutathione-S-transferase,exhibit altered anti-oxidant metabolism and improved abiotic stress tolerance. Plant Biotechnology Journal, 2011,9(6):661-673.
doi: 10.1111/pbi.2011.9.issue-6
[1] . [J]. Crops, 2013, 29(3): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .