Crops ›› 2019, Vol. 35 ›› Issue (5): 76-81.doi: 10.16035/j.issn.1001-7283.2019.05.013

Previous Articles     Next Articles

Evaluation of Productivity and Quality of Wild Domestication Poa annua L. in Northern Tibet

Wei Wei1,Zhou Juanjuan1,Sang Dan1,Tenzin Tarchen1,Cui Yan2,Qin Aiqiong1   

  1. 1 State Key Laboratory of Highland Barley and Yak Germplasm Resources and Genetic Improvement/Institute of Pratacultural Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850000, Tibet, China
    2 Agriculture and Animal Husbandry Bureau of Aohan Banner, Chifeng of Inner Mongolia,Chifeng 024300, Inner Mongolia, China
  • Received:2019-02-27 Revised:2019-07-29 Online:2019-10-15 Published:2019-11-07
  • Contact: Aiqiong Qin

Abstract:

In order to explore the approaches for alleviating forage shortage and grassland degradation in northern Tibet, this study carried out a domestication experiment with Poa litwinowiana, P. attenuata and P. crymophila, P. crymophila cv. Qinghai was the control, for screening the high-quality local Poa annua forage suitable for the alpine regions. Analyses and comparisons were made on the growth characteristics and nutritional quality of different experimental materials under field conditions at 4 512m elevation. The results showed that the above-ground biomass, plant height and neutral detergent fiber (NDF) and acid detergent fiber (ADF) of Poa annua were gradually increased, the crude protein (CP) and crude fat (CF) decreased with the prolongation of growth stage. The above-ground biomass of three wild Poa annua in the milk maturity stage was significantly higher (P<0.05) than that of the control; the order of root biomass was P. attenuata > P. litwinowiana > P. crymophila > P. crymophila cv. Qinghai. The CP content of P. crymophila was significantly higher (P<0.05) than that of P. attenuate, and ADF and NDF contents of P. attenuate was the lowest. The gray system theory of entropy weighting method was used to evaluate the productivity and nutrient quality of different Poa annua in milk maturity stage, the order was showed that P. attenuata > P. crymophila (wild species) > P. litwinowiana > P. crymophila cv. Qinghai (cultivated species).

Key words: Tibet Plateau, Poa annua L., Domestication and cultivation, Production performance, Nutritional quality

Table 1

Soil nutrients content of the experimental field"

指标
Index
pH 有机质(%)
Organic matter
全氮(g/kg)
Total N
全磷(g/kg)
Total P
全钾(g/kg)
Total K
碱解氮(mg/kg)
Alkaline hydrolysis N
速效磷(mg/kg)
Available P
速效钾(mg/kg)
Available K
测定值Measured value 7.85 0.24 2.37 0.68 3.91 78.52 19.14 217.81

Table 2

Profile of seeds collecting plots"

编号
Number
材料名称
Material name
采集地经纬度
Collecting plot longitude and latitude
海拔 (m)
Altitude
所属地区
Belong to area
CK 青海冷地早熟禾(P. crymophila cv. Qinghai) - - 海南州同德县
P-1 中亚早熟禾(P. litwinowiana) N 29°53′E 92°30′ 4 200 那曲市巴青县
P-2 渐尖早熟禾(P. attenuata) N 31°08′E 92°12′ 4 500 那曲市那曲县
P-3 冷地早熟禾(P. crymophila) N 32°03′E 92°17′ 4 800 那曲市聂荣县

Table 3

Above-ground biomass, plant height, panicle length and root biomass variation at different growth stages of four materials"

编号Number 拔节期Jointing stage 抽穗期Heading stage 乳熟期Milky maturity stage
地上生物量Above-ground biomass (g/m2) CK 15.56±2.27a 26.37±0.44c 67.50±4.33b
P-1 15.94±2.21a 27.22±1.37bc 85.46±9.49a
P-2 16.49±3.40a 32.36±2.60ab 88.29±5.17a
P-3 15.09±1.43a 36.87±4.66a 88.74±6.12a
株高Plant height (cm) CK 6.64±1.43b 11.30±1.69c 25.38±3.86a
P-1 8.74±0.92a 13.14±2.92bc 27.40±5.90a
P-2 5.58±1.03b 13.34±1.85b 21.50±6.10b
P-3 6.11±1.27b 17.58±1.57a 25.31±5.25a
穗长Panicle length (cm) CK - - 4.76±0.23ab
P-1 - - 5.29±0.29a
P-2 - - 4.12±0.19b
P-3 - - 4.26±0.36b
根系生物量Root biomass(g/m2) CK - - 216.93±11.09b
P-1 - - 270.04±31.70a
P-2 - - 301.65±21.15a
P-3 - - 229.20±17.06b

Fig.1

The crude protein, acid detergent fiber, neutral detergent fiber and crude fat contents at different growth stages of four materials Different lowercase letters in the same growth stage indicate significant difference (P<0.05)"

Table 4

RFV at different growth stages of tested Poa annua"

生育期Growth stage CK P-1 P-2 P-3
拔节期Jointing stage 110.83 111.06 122.97 110.85
抽穗期Heading stage 106.14 100.34 113.29 103.64
乳熟期Milky maturity stage 81.47 82.63 98.49 81.47

Table 5

"Optimal varieties" and index weights"

株高
Plant height
干草产量
Hay yield
粗蛋白含量
Crude protein
content
酸性洗涤纤维含量
Acid detergent
fiber content
中性洗涤纤维含量
Neutral detergent
fiber content
粗脂肪含量
Crude fat
content
相对饲
用价值
RFV
X0 27.4000 88.7400 9.4700 55.8300 38.2300 3.8900 98.4900
熵值Entropy 0.7675 0.7704 0.7727 0.7736 0.7704 0.7729 0.7718
权重Weight 0.1452 0.1434 0.1420 0.1414 0.1434 0.1419 0.1426

Table 6

Coefficient of correlation values of different measurement indexes"

编号
Number
株高
Plant height
干草产量
Hay yield
粗蛋白含量
Crude protein
content
酸性洗涤纤维含量
Acid detergent
fiber content
中性洗涤纤维含量
Neutral detergent
fiber content
粗脂肪含量
Crude fat
content
相对饲
用价值
RFV
CK 0.6944 0.4116 0.6485 0.8089 0.4368 1.0000 0.4922
P-1 1.0000 0.8191 0.6134 0.8089 0.4549 0.6873 0.5099
P-2 0.3333 0.9706 0.5249 1.0000 1.0000 0.5611 1.0000
P-3 0.6871 1.0000 1.0000 0.8452 0.4262 0.5953 0.4922

Table 7

Correlation modulus and ranking of tested Poa annua"

编号
Number
等权关联度
Correlation modulus of
same weight
等权关联度排序
Order of correlation
modulus of same weight
加权关联度
Correlation modulus
of weight
加权关联度排序
Order of correlation modulus of weight
CK 0.6411 4 0.6418 4
P-1 0.6697 3 0.6991 3
P-2 0.7692 1 0.7700 1
P-3 0.7206 2 0.7209 2
[1] 方强恩, 孙英, 白小明 , 等. 甘肃早熟禾属野生植物资源分布研究. 中国草地学报, 2010,32(6):39-45.
[2] 吴征镒 . 西藏植物志. 北京: 科学出版社, 1983: 95-121.
[3] 侯宪宽, 董全民, 施建军 , 等. 青海草地早熟禾单播人工草地群落结构特征及土壤理化性质研究. 中国草地学报, 2015,37(1):65-69.
[4] 罗文蓉, 栗文瀚, 干珠扎布 , 等. 施氮对藏北垂穗披碱草人工草地叶片功能性状和种群特征的影响. 草业学报, 2018,27(5):51-60.
[5] 高清竹, 李玉娥, 林而达 , 等. 藏北地区草地退化的时空分布特征. 地理学报, 2005,60(6):965-973.
[6] 石红霄, 侯向阳, 师尚礼 , 等. 高寒草甸高原早熟禾个体性状对放牧与围封的响应. 生态学报, 2016,36(12):3601-3608.
doi: 10.5846/stxb201506151200
[7] 侯建杰, 赵桂琴, 焦婷 , 等. 6个燕麦品种(系)在甘肃夏河地区的适应性评价. 草原与草坪, 2013,33(2):26-37.
[8] 杜军 . 藏北牧草青草期的气候变化特征分析. 应用气象学报, 2006,17(1):29-36.
[9] 王学霞, 高清竹, 干珠扎布 , 等. 藏北高寒草甸温室气体排放对长期增温的响应. 中国农业气象, 2018,39(3):152-161.
[10] 任继周, 吴自立, 李绶章 , 等. 草原生态化学实习实验指导. 北京: 农业出版社, 1987.
[11] 曾日秋, 林永生, 洪建基 , 等. 4个臂形草品种在闽南地区的生育特性及其相对饲用价值研究. 草业科学, 2009,26(8):107-111.
[12] 周娟娟, 王欣荣, 吴建平 , 等. 调制方式对苜蓿青干草干燥特性和营养品质的影响. 草业科学, 2013,30(8):1272-1277.
[13] 董世魁, 胡自治 . 人工草地群落稳定性及其调控机制研究现状. 草原与草坪, 2000(3):3-8.
[14] 刘露 . 高羊茅和草地早熟禾幼穗分化和种子产量形成的调控研究. 上海:上海交通大学, 2009.
[15] 徐大伟, 徐丽君, 辛晓平 , 等. 呼伦贝尔地区不同多年生牧草根系形态性状及分布研究. 草地学报, 2017,25(1):55-60.
[16] 时颖, 师尚礼, 荣思川 , 等. 9份甘肃野生驯化草地早熟禾种质的生产性能比较研究. 草原与草坪, 2016,36(5):12-20.
[17] Kung L J, Taylor C C, Lynch M P . The effect of treating alfalfa with Lactobacillus bunchneri 40788 on silage fermentation,aerobic stability,and nutritive value for lactating dairy cows. Journal of Dairy Science, 2003,86(1):336-343.
[18] 李向林, 张新跃, 唐一国 , 等. 日粮中精料和牧草比例对舍饲山羊增重的影响. 草业学报, 2008,7(2):43-47.
[19] 刘刚, 赵桂琴, 魏黎明 . 基于熵权赋权法的灰色系统理论在燕麦品种综合评价中的应用. 中国草地学报, 2007,29(3):84-89.
[20] Soreng R J . Chloroplast-DNA phylogenetics and biogeography in a reticulating group:study in Poa (Poaceae). American Journal of Botany, 1990,77(11):1383-1400.
[21] 孙明德, 王海桥 . 高寒地区改良草地的优良牧草—青海冷地早熟禾. 青海草业, 2017,26(4):6-10.
[22] 许志信, 曲永全 . 草甸草原12种牧草生长发育规律和草群地上生物量变化动态研究. 内蒙古农业大学学报(自然科学版), 2001,22(2):28-32.
[23] 于健龙, 石红霄 . 高寒草甸主要乡土牧草营养成分的灰色关联综合评价及利用潜力. 家畜生态学报, 32(4):58-64.
[24] 徐世晓, 赵新全 . 气候变暖对青藏高原牧草营养含量及其体外消化率影响模拟研究. 植物学报, 2002,44(11):1357-1364.
[1] Jin Yulong,Bai Ting,Zhu Mingxia,Liu Xiaojiao,Wang Shanshan,Zhang Zhiwei,Hu Yun,Zhang Yuhong. Comprehensive Evaluation of Quality of Nine Tibetan Barley Landlaces by Factor Analysis [J]. Crops, 2019, 35(4): 55-60.
[2] Ying Fu,Yinan Shen,Yanchun Liu,Xiaojiao Chai,Xianrui Wang,Xiaolei Bai,Shutian Li. Correlation Analysis of Amylopectin Content, Nutritional Quality and Agronomic Traits in Spring Millet Varieties [J]. Crops, 2019, 35(2): 90-93.
[3] Fu Yang,Minna Zheng,Jiahui Kang,Xiuzhi Liang,Chao Jiang,Yinfan Li. Comprehensive Evaluation of Production Performance and Feeding Value of 9 Oat Varieties in Northern Shanxi [J]. Crops, 2019, 35(2): 94-98.
[4] Yu Fan,Hongli Wang,Feng He,Dili Lai,Jiajun Wang,Yue Song,Dabing Xiang. Nutritional Quality in Seeds of Tartary Buckwheat Affected by After-Ripening [J]. Crops, 2018, 34(1): 96-101.
[5] Qiang Guo,Lingling Yu,Guiyuan Zhao. Effects of Different Harvest Date on Grain Quality of Waxy Maize [J]. Crops, 2017, 33(2): 126-129.
[6] Wei Wei,Ba La,Wencai Yang,Gaweng Baima,Juanjuan Zhou. Effects of Combined Application of N and P Fertilizer on the Yield and Quality of Avena sativa cv. Qingyin No.1 [J]. Crops, 2016, 32(1): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .