Crops ›› 2019, Vol. 35 ›› Issue (5): 41-45.doi: 10.16035/j.issn.1001-7283.2019.05.007

Previous Articles     Next Articles

Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties

Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong   

  1. School of Life Science, Shanxi Datong University, Datong 037009, Shanxi, China
  • Received:2019-06-17 Revised:2019-08-19 Online:2019-10-15 Published:2019-11-07
  • Contact: Runmei Wang

Abstract:

Excavation, innovation, screening of soybean germplasm with excellent comprehensive traits and drought-resistance potential is of great significance for the selection of soybeans and meeting the needs of the market. Changes in physiological and biochemical indexes (chlorophyll content, superoxide enzyme activity, peroxidase activity) and evaluation of agronomic traits related to plant yield at maturity were studied under natural drought stress and normal irrigation treatment using 10 soybean varieties to screen out excellent drought-tolerant soybean varieties suitable for planting in the arid regions of northern Shanxi. The results showed that the normal growth and development of soybean under natural drought stress was seriously affected compared with the normal irrigation treatment. The chlorophyll loss rate was 9.70%-44.93% in the drought stress group compared with the normal irrigation group. While the superoxide dismutase activity increased by 0.98%-68.10%, and the peroxidase activity increased by 1.66%-58.72%. Compared with the drought-tolerant variety Jindou 21, the drought-resistances of Suinong 4, Suinong 14 and Hefeng 56 were stronger.

Key words: Soybean, Seedling stage, Drought resistance, Identification, Screening

Fig.1

The effects of drought stress on chlorophyll a content in soybean leaves Different small letters indicate significant difference at 0.05 level. The same below"

Fig.2

The effects of drought stress on chlorophyll b content in soybean leaves"

Table 1

Variation range of physiological and biochemical indexes of tested materials under drought stress %"

品种
Variety
叶绿素损失率
Loss rate of
chlorophyll
SOD活性增长率
Growth rate
of SOD activity
POD活性增长率
Growth rate
of POD activity
晋豆21 Jindou 21 10.52 52.62 54.23
早熟1号Zaoshu 1 26.06 30.49 27.19
中品661 Zhongpin 661 36.72 21.10 1.66
黑农57 Heinong 57 44.93 0.98 2.00
黑农69 Heinong 69 44.18 22.81 8.86
绥农4 Suinong 4 11.12 56.29 57.76
绥农14 Suinong 14 9.70 58.80 55.31
垦农21 Kennong 21 15.75 40.85 2.37
合丰56 Hefeng 56 12.49 68.10 58.72
Jack 36.12 26.01 10.55
Willams 82 26.84 18.11 23.62

Table 2

Comparison of 4 agronomic traits of 11 soybean germplasm resources"

指标
Index
最大值Max 最小值Mix 极差Range 均值Average 标准差Standard deviation 变异系数CV (%)
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
正常灌水
Normal irrigation
自然干旱胁迫
Natural drought
stress
株高(cm)
Plant height
140.00 109.00 35.00 26.00 105.00 83.00 62.68 45.01 25.74 20.79 41.06 46.19
主茎节数
Nodes of main stem
20.00 16.00 4.00 5.00 16.00 11.00 9.84 8.63 3.25 2.84 33.05 32.91
单株荚数
Pods per plant
27.00 25.00 6.00 7.00 21.00 18.00 14.08 12.06 4.89 4.52 34.70 37.51
单株粒数
Seeds per plant
73.00 69.00 20.00 16.00 53.00 53.00 37.28 30.03 11.59 11.90 31.09 39.62
[1] 郑景云, 黄金火 . 我国近40年的粮食灾损评估. 地理学报, 1998,53(6):23-32.
[2] 刘艮舟, 盖钧镒, 马育华 . 江淮下游大豆地方品种抗旱性鉴定的初步研究. 南京农业大学学报, 1989,12(1):15-20.
[3] Serdar M, Neslihan S G, Nuran D , et al. Changes in anatomical and physiological parameters of soybean under drought stress. Turkish Journal of Botany, 2011,35(4):369-377.
[4] Iftekhar A, Shamima A S, Kyung H K , et al. Proteome analysis of soybean roots subjected to short-term drought stress. Plant Soil, 2010,333(1/2):491-505.
[5] Thomas R S, Maciej A Z, Noel M H . Low leaf hydraulic conductance associated with drought tolerance in soybean. Physiologia Plantarum, 2008,132(4):446-451.
[6] 臧紫薇, 李文滨, 韩英鹏 , 等. 大豆种质资源苗期抗旱性评价. 大豆科学, 2016,35(6):964-968.
[7] 王春艳, 陈香兰, 王连敏 , 等. 根际渍水对大豆叶绿素含量的影响. 中国油料, 1990(1):29-32.
[8] 李贵全, 杜维俊, 孔照胜 , 等. 不同大豆品种抗旱生理生态的研究. 山西农业大学学报, 2000,20(3):197-200.
[9] 赵立琴 . 干旱胁迫对大豆抗旱生理指标及产量和品质影响. 哈尔滨:东北农业大学, 2014.
[10] 郭数进, 李贵全 . 晋旱125×(昔野×501)杂交后代保护酶与抗旱性关系的研究. 黑龙江农业科学, 2008(2):23-26.
[11] 乔亚科, 杨晓倩, 乔潇 , 等. 大豆基于形态及生理指标的抗旱性评价及相关性分析. 大豆科学, 2014,33(5):667-673.
[12] 崔杰印, 武婷婷, 宋雯雯 , 等. 黑龙江中上游地区早熟野生大豆种质资源的抗旱性鉴定. 植物遗传资源学报, 2018,19(6):1073-1082.
[13] 张彦军, 王兴荣, 张金福 , 等. 大豆抗旱种质资源筛选及利用. 甘肃农业科技, 2018(8):54-60.
[14] 李文滨, 宋春晓, 苌兴超 , 等. 干旱胁迫下20个大豆品种抗旱性评价. 东北农业大学学报, 2019,5(14):1-9.
[15] 任海洋, 童淑媛, 杜维广 , 等. 结荚鼓粒期土壤水分胁迫对不同大豆品种形态和生理特性的影响. 中国油料作物学报, 2011,33(4):362-367.
[16] 邓思雪 . 干旱胁迫下不同大豆品种萌发特性及其耐旱性评价. 沈阳:沈阳农业大学, 2018.
[17] 张志良, 瞿伟菁 . 植物生理学实验指导(第3版). 北京: 高等教育出版社, 2003.
[18] 邱丽娟, 常汝镇 . 大豆种质资源描述规范和数据标准. 北京: 中国农业出版社, 2006: 58-75.
[19] 田再民, 龚学臣, 抗艳红 , 等. 植物对干旱胁迫生理反应的研究进展. 安徽农业科学, 2011,39(26):16475-16477.
[20] 林汉明, 常汝镇, 邵桂花 , 等. 中国大豆耐逆研究. 北京: 中国农业出版社, 2009: 26-35.
[21] 黄义春 . 植物抗旱机制的研究概述. 现代农业, 2015(10):26-27.
[1] Xie Linyan,Di Yining,Liu Lufeng,Wu Qinglian,Shen Xianyue,Xu Rong,Meng Yu,He Lilian,Li Fusheng. Isolation and ITS Sequence Identification of the Pathogen Causing Red Rot Disease on Sugarcane [J]. Crops, 2019, 35(5): 196-199.
[2] Guo Ruifeng,Ren Yuemei,Yang Zhong,Ren Guangbing,Zhang Shou,Feng Jing. Screening of Chemical Male Killing Agents for Millet [J]. Crops, 2019, 35(5): 64-68.
[3] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16.
[4] Yue Linqi,Shi Weiping,Guo Jiahui,Guo Pingyi,Guo Jie. Response of Cutin Synthetic Genes of Foxtail Millet to Drought Stress [J]. Crops, 2019, 35(4): 183-190.
[5] Zhang Yaowen,Hou Junli,Zhao Xiaoguang,Guan Zhoubo,Li Dianrong,Tian Jianhua,Dong Yuhong,Wang Zhuyun. Comprehensive Identification and Selection System and Method for Rape Germplasm with High Photosynthetic Efficiency [J]. Crops, 2019, 35(4): 69-76.
[6] Ma Mingchuan,Liu Longlong,Zhang Lijun,Cui Lin,Zhou Jianping. Morphological Identification and Analysis of EMS-Induced Mutants from Ciqiao [J]. Crops, 2019, 35(3): 37-41.
[7] Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65.
[8] Jiang Ying,Feng Naijie,Wang Xiaonan,Han Xicai,Han Chengwei,Zhao Yue,Cao Kun,Sun Yufeng,Li Zhenwei. Screening and Identification of Male-Specific RAPD and SCAR Markers in Cannabis sativa L. (Industrial Hemp) [J]. Crops, 2019, 35(3): 66-72.
[9] Xixi Dai,Heming Zhan,Xinghong Cui,Yinyue Zhao,Dandan Shan,Liang Zhang,Tiejun Wang. A Mathematical Model of Density Coupling and Its Optimization in Maize-Soybean Intercropping [J]. Crops, 2019, 35(2): 128-135.
[10] Zhiyong Hao,Guangdong Yang,Guangwei Qiu,Zunyan Hu,Lichun Wang,Haiyan Wang. Screening of High Carotenoid Resources in Potato [J]. Crops, 2019, 35(2): 71-77.
[11] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[12] Bo Liu,Ling Wei,Junhong Xiao,Haifeng Yang,Xueyan Duan,Aiping Chen,Ruilan Ren. Study on Improving the Hybrid Seed Setting Rate of Soybean [J]. Crops, 2019, 35(1): 81-84.
[13] Junping He,Shufen Zhang,Jianping Wang,Dongfang Cai,Jinhua Cao,Yancheng Wen,Kun Hu,Lei Zhao,Dongguo Wang,Jiacheng Zhu. Hybrid Purity Identification of Fengyou No.10 by SSR Markers in Bassica napus [J]. Crops, 2019, 35(1): 75-80.
[14] Si Chen,Xue Yang,Xiukun Yang,Hongmei Yuan,Wengong Huang,Yan Liu,Yubo Yao,Guangwen Wu. Screening Pasmo-Resistant Germplasm Resources from Flax Varieties (Lines) [J]. Crops, 2019, 35(1): 63-67.
[15] Xinling Yang,Qian Yao,Wenli Ping,Yiqiong Ma,Baolin Wang,Guotao Jia,Yongfeng Yang,Hong Cui. Screening of High Aroma Mutants from Progenies of EMS Mutagenized Flue-Cured Tobacco [J]. Crops, 2019, 35(1): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang. Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene[J]. Crops, 2019, 35(5): 37 -40 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .