Crops ›› 2019, Vol. 35 ›› Issue (5): 37-40.doi: 10.16035/j.issn.1001-7283.2019.05.006

Previous Articles     Next Articles

Genetic Analysis of the Kernel Length of Maize with Mixed Model of Major Gene Plus Polygene

Zhang Zhongwei,Yang Hailong,Fu Jun,Xie Wenjin,Feng Guang   

  1. Dandong Academy of Agricultural Sciences, Fengcheng 118109, Liaoning, China
  • Received:2019-02-11 Revised:2019-06-10 Online:2019-10-15 Published:2019-11-07
  • Contact: Guang Feng

Abstract:

The kernel length of maize is the important trait for superior variety selection. P1, F1, P2, B1, B2 and F2 generations of different kernel length maize inbred lines Tie 7922 and E28 were used to research on the inheritance of maize kernel length with major gene-ploygene mixed inheritance analysis. The results showed that: the kernel length represented transgressive heterosis in F1, the inheritance of maize kernel length trait fitted the model of two pair of additive-dominance-epitasis major gene plus additive- dominance-epitasis polygene about E-1-0 Model; the major gene heritability was between 41.22%-80.58%; the polygene heritability was between 17.68%-24.95%, the environmental factors of the phenotypic variation was between 19.42%-41.10%. The effects of major gene were more important than the effects of polygene to maize kernel length inheritance, and the accumulation of major genes of additive was significant, so the kernel length was selected by accumulated of generations.

Key words: Maize (Zea mays L.), Kernel length, Major gene+polygene, Genetic

Table 1

The range of kernel length for 16 grades"

分级
Grade
分离世代粒长(cm)
The kernel length of segregating generation
B1 B2 F2
1 0.905~0.955 0.829~0.871 0.858~0.902
2 0.955~1.005 0.871~0.913 0.902~0.946
3 1.005~1.055 0.913~0.955 0.946~0.990
4 1.055~1.105 0.955~0.997 0.990~1.034
5 1.105~1.155 0.997~1.039 1.034~1.078
6 1.155~1.205 1.039~1.081 1.078~1.122
7 1.205~1.255 1.081~1.123 1.122~1.166
8 1.255~1.305 1.123~1.165 1.166~1.210
9 1.305~1.355 1.165~1.207 1.210~1.254
10 1.355~1.405 1.207~1.249 1.254~1.298
11 1.405~1.455 1.249~1.291 1.298~1.342
12 1.455~1.505 1.291~1.333 1.342~1.386
13 1.505~1.555 1.333~1.375 1.386~1.430
14 1.555~1.605 1.375~1.417 1.430~1.474
15 1.605~1.655 1.417~1.459 1.474~1.518
16 1.655~1.705 1.459~1.501 1.518~1.562

Fig.1

The frequency distribution of kernellength grade in segregating generation of Tie7922×E28"

Table 2

The AIC value for kernel length of six generations of 24 genetic models"

模型
Model
AIC值
AIC value
模型
Model
AIC值
AIC value
模型
Model
AIC值
AICvalue
A-1 -665.57 B-1-5 -798.31 D-4 -1021.08
A-2 -637.62 B-1-6 -800.31 E-1-0 -1218.29
A-3 -665.78 C-0 -1173.82 E-1-1 -1192.33
A-4 -460.48 C-1 -1051.80 E-1-2 -1043.33
B-1-1 -1226.44 D-0 -1169.82 E-1-3 -1119.19
B-1-2 -823.00 D-1 -1016.32 E-1-4 -1044.74
B-1-3 -583.27 D-2 -1018.31 E-1-5 -1047.33
B-1-4 -668.10 D-3 -1017.89 E-1-6 -

Table 3

The applicability test of alternative genetic models for kernel length"

模型Model 群体Population U12 U22 U32 nW2 Dn
B-1-1 P1 8.182(0.004)* 7.129(0.008)* 0.159(0.690) 0.889(<0.05)* 0.379(<0.05)*
F1 4.795(0.029)* 8.118(0.004)* 8.502(0.004)* 0.594(<0.05)* 0.325(<0.05)*
P2 0.011(0.915) 0.759(0.384) 9.423(0.002)* 0.296(>0.05) 0.230(>0.05)
B1 36.913(0.000)* 24.047(0.000)* 15.334(0.000)* 4.214(<0.05)* 0.206(<0.05)*
B2 33.711(0.000)* 15.517(0.000)* 45.296(0.000)* 4.713(<0.05)* 0.253(<0.05)*
F2 0.012(0.912) 0.576(0.448) 6.805(0.009)* 0.254(>0.05) 0.073(>0.05)
E-1-0 P1 0.029(0.864) 0.116(0.734) 0.485(0.486) 0.064(>0.05) 0.145(>0.05)
F1 0.054(0.816) 0.475(0.491) 13.369(0.000)* 0.264(>0.05) 0.219(>0.05)
P2 0.011(0.918) 0.580(0.447) 7.002(0.008)* 0.220(>0.05) 0.203(>0.05)
B1 2.849(0.091) 0.892(0.345) 7.611(0.006)* 0.635(<0.05)* 0.107(<0.05)*
B2 0.100(0.752) 0.275(0.600) 0.765(0.382) 0.078(>0.05) 0.052(>0.05)
F2 0.016(0.900) 0.016(0.901) 0.000(0.990) 0.027(>0.05) 0.034(>0.05)

Table 4

Estimated values about genetic parameters of kernel length"

一阶参数
First order
parameter
估计值
Estimated
value
二阶参数
Second order
parameter
估计值
Estimated value
B1 B2 F2
m1 0.81 σp2 0.01 0.02 0.02
m2 1.35 σmg2 0.00 0.01 0.02
m3 0.72 σpg2 0.00 0.01 0.00
m4 1.19 σ2 0.00 0.00 0.00
m5 1.26 h2mg (%) 41.22 51.49 80.58
m6 1.12 h2pg (%) 17.68 24.95 0.00
da 0.12
db 0.06
ha 0.02
hb 0.02
i 0.02
jab 0.05
jba 0.12
l -0.02
[1] 郭战勇, 吕盼晴, 张向歌 , 等. 利用单片段代换系的测交群体定位玉米籽粒性状杂种优势位点. 中国农业科学, 2016,49(4):621-631.
doi: 10.3864/j.issn.0578-1752.2016.04.002
[2] 张伟强, 库丽霞, 张君 , 等. 玉米出籽率、籽粒深度和百粒重的QTL分析. 作物学报, 2013,39(3):455-463.
doi: 10.3724/SP.J.1006.2013.00455
[3] 郭佳丽, 吕志尧, 吕颖颖 , 等. 玉米粒部性状对籽粒脱水速率的影响. 玉米科学, 2014,22(4):33-38.
[4] 盖钧镒, 章元明, 王建康 . 植物数量性状遗传体系. 北京: 科学出版社, 2003.
[5] 盖钧镒, 章元明, 王建康 . QTL混合遗传模型扩展至2对主基因+多基因时的多世代联合分析. 作物学报, 2000,26(4):385-391.
[6] 孔繁玲 . 植物数量遗传学. 北京: 中国农业大学出版社, 2006.
[7] 金岩, 吕艳艳, 付三雄 , 等. 甘蓝型油菜苗期耐淹性状主基因+多基因遗传分析. 作物学报, 2014,40(11):1964-1972.
doi: 10.3724/SP.J.1006.2014.01964
[8] 丰光, 刘志芳, 李妍妍 , 等. 玉米茎秆耐穿刺强度的倒伏遗传研究. 作物学报, 2009,35(11):2133-2138.
doi: 10.3724/SP.J.1006.2009.02133
[9] 丰光, 王孝杰, 吕春波 , 等. 旅大红骨玉米种质掌状扁形果穗的遗传研究. 种子, 2017,36(9):35-38.
[10] 张怀胜, 陈士林, 王铁固 , 等. 玉米穗长和穗粗的主基因-多基因混合遗传模型分析. 广东农业科学, 2012(19):6-9.
[11] 石明亮, 江建华, 梁奎 , 等. 玉米新选自交系2个组合6个世代穗行数和行粒数的遗传分析. 华北农学报, 2010,25(5):104-111.
doi: 10.7668/hbnxb.2010.05.022
[12] 包和平, 毕成龙, 李颖 , 等. 爆裂玉米百粒重性状的主基因+多基因混合遗传分析. 华北农学报, 2011,26(3):199-203.
doi: 10.7668/hbnxb.2011.03.039
[13] 彭勃, 王阳, 李永祥 , 等. 玉米籽粒产量与产量构成因子的关系及条件QTL分析. 作物学报, 2010,36(10):1624-1633.
doi: 10.3724/SP.J.1006.2010.01624
[14] 曹晓良, 翟立红, 刘瑞响 , 等. 玉米八个产量相关性状的QTL鉴定. 河北农业大学学报, 2012,35(5):1-8.
[15] 张向歌, 王彬, 袁亮 , 等. 基于单片段代换系玉米子粒性状的QTL定位. 玉米科学, 2013,21(6):35-40.
[1] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers [J]. Crops, 2019, 35(5): 15-21.
[2] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower [J]. Crops, 2019, 35(5): 22-27.
[3] Huang Fan,Li Jun,Liu Lei,Li Zhiyong,Li Hongyan,Shi Wengui,Xie Yongfeng. Effects of Artificial Aging on Genetic Integrity of Elymus sibiricus L. [J]. Crops, 2019, 35(5): 52-56.
[4] Lü Wei,Han Junmei,Ren Guoxiang,Wen Fei,Wang Ruopeng,Liu Wenping. Genetic Diversity Analysis of Sesame Germplasm Resources in Shanxi [J]. Crops, 2019, 35(5): 57-63.
[5] Li Jing,Nan Ming. Analysis of Agronomic Characters and Genetic Diversity of 62 Winter Wheat Germplasms from Russia and Ukraine in Northwest China [J]. Crops, 2019, 35(5): 9-14.
[6] Ping Wenjing,Guo Yuan,Huang Yaqun,Chen Jingtang,Zhu Liying,Zhao Yongfeng,Guo Jinjie. Study on the Absorption and Distribution of Zinc and Iron between Maize Hybird and Its Parents [J]. Crops, 2019, 35(4): 49-54.
[7] Wang Yu,Ma Hui,Xu Xue,Qin Ruiying,Yang Jianbo,Wang Xiufeng. Screening and Application of Functional Insertion-Deletion Markers (InDel) in Rice [J]. Crops, 2019, 35(4): 84-93.
[8] Wu Jianzhong,Li Suiyan,Lin Hong,Ma Yanhua,Pan Liyan,Li Donglin,Sun Dequan. Genetic Variation and Principal Component Analysis of Silage Maize Quality Traits [J]. Crops, 2019, 35(3): 42-48.
[9] Li Yanfang,Du Yanwei,Zhang Zheng,Wang Gaohong,Zhao Genyou,Zhao Jinfeng,Yu Aili. Establishment and Optimization of Agrobacterium Mediated Transformation System for Mature Embryo of Foxtail Millet [J]. Crops, 2019, 35(3): 73-79.
[10] Cai Dongfang,Zhang Shufen,Wang Jianping,Cao Jinhua,Wen Yancheng,Zhang Shufa,He Junping,Zhao Lei,Wang Dongguo,Zhu Jiacheng. Genetic Analysis of Rape Hybrid Fengyou No.10 Using SNP Chips [J]. Crops, 2019, 35(3): 80-85.
[11] Chunyu Lin,Xiaoyu Liang,Huiyan Zhao,Yang Wang. Analysis of Genetic Diversity and Population Structure of Main Soybean Varieties in Heilongjiang Province [J]. Crops, 2019, 35(2): 78-83.
[12] Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang. Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers [J]. Crops, 2019, 35(1): 15-21.
[13] Fang Chen,Shixiao Xu,Xiaohui Li,Chao Liu,Jianfei Zhou,Yuan Wang,Pei Tian,Tiezhao Yang. Construction of Molecular Fingerprinting and Analysis of Genetic Diversity for 80 Tobacco (Nicotiana tabacum) Germplasms Based on SSR Markers [J]. Crops, 2019, 35(1): 22-31.
[14] Rula Sa,Xiaoling Song,Xiaoqing Zhao,Songli Shi,Yingchun Bai,Yanfang Wang,Xirui Zhang. Evaluation of the Content of Flax Lignan and Genetic Diversity [J]. Crops, 2019, 35(1): 56-62.
[15] Yi Liuxi,Siqin Bateer,Gao Fengyun,Zhou Yu,Jia Xiaoyun,Chen Mingzhe,Zhang Hui,Jia Haibin. Genetic Diversity of Flax Germplasm Resources in Inner Mongolia [J]. Crops, 2018, 34(6): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Wang Haitao,Liu Cunjing,Tang Liyuan,Zhang Sujun,Li Xinghe,Cai Xiao,Zhang Xiangyun,Zhang Jianhong. Status and Developmental Tendency of Hybrid Cotton in Hebei Province[J]. Crops, 2019, 35(5): 1 -8 .
[2] Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance[J]. Crops, 2019, 35(4): 10 -16 .
[3] Huang Yufang,Ye Youliang,Zhao Yanan,Yue Songhua,Bai Hongbo,Wang Yang. Effects of Nitrogen Application Rates on Yield and Mineral Concentrations of Winter Wheat Grains in the North of Henan Province[J]. Crops, 2019, 35(5): 104 -108 .
[4] Meng Fanlai,Guo Huachun. Effects of Enhanced UV-B on Photosynthetic Characteristics and UV-Absorbing Compounds of Sweet Potato[J]. Crops, 2019, 35(5): 114 -119 .
[5] Zhang Yanhua,Chang Xuhong,Wang Demei,Tao Zhiqiang,Wang Yanjie,Yang Yushuang,Zhao Guangcai. Effects of Zinc Topdressing Fertilizer on Yield and Quality of Wheat under Different Soil Conditions[J]. Crops, 2019, 35(5): 109 -113 .
[6] Li Song,Zhang Shicheng,Dong Yunwu,Shi Delin,Shi Yundong. Genetic Diversity Analysis of Rice Varieties in Tengchong, Yunnan Based on SSR Markers[J]. Crops, 2019, 35(5): 15 -21 .
[7] Wang Yongxing,Shan Feibiao,Yan Wenzhi,Du Ruixia,Yang Qinfang,Liu Chunhui,Bai Lihua. Genetic Diversity Analysis and Code Classification Based on DUS Testing in Sunflower[J]. Crops, 2019, 35(5): 22 -27 .
[8] Shi Zhaokang,Zhao Zequn,Zhang Yuanhang,Xu Shiying,Wang Ning,Wang Weijie,Cheng Hao,Xing Guofang,Feng Wanjun. The Response and Cluster Analysis of Biomass Accumulation and Root Morphology of Maize Inbred Lines Seedlings to Two Nitrogen Application Levels[J]. Crops, 2019, 35(5): 28 -36 .
[9] Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties[J]. Crops, 2019, 35(5): 41 -45 .
[10] Li Hongtao,Xu Hanyuan,Li Jingfang,Zhu Qing,Chi Ming,Wang Jun. Analysis of Gene Effect on Chlorophyll Content in Maize[J]. Crops, 2019, 35(5): 46 -51 .