Crops ›› 2021, Vol. 37 ›› Issue (5): 14-19.doi: 10.16035/j.issn.1001-7283.2021.05.003

Previous Articles     Next Articles

Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections

Zhang Yanru1(), Yang Zihe1, Yang Rong2, Han Jian3, Jiao Jinlong1, Zhao Li1, Wu Yuanqi1()   

  1. 1Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
    2Ya'an Agricultural Science Research Institute, Ya'an 625000, Sichuan, China
    3Agriculture and Rural Bureau of Peng'an County, Nanchong 637800, Sichuan, China
  • Received:2020-12-23 Revised:2021-07-07 Online:2021-10-15 Published:2021-10-14
  • Contact: Wu Yuanqi E-mail:1614245786@qq.com;wuyuanqi@hotmail.com

Abstract:

In order to evaluate the effect of controlled parental mixed selection on the adaptive improvement of main characters of AC0, an African maize germplasm synthesis base population. The combined analysis of variance and coefficient of variation were used to analyze the variation of characters among populations. The results showed that compared with the basic population AC0, the plant height of the improved populations AC1 and AC2 increased by 8.60% and 11.60%, respectively, reaching a extremely significant level. The ear height increased by 11.34% and 16.18% respectively, reaching a extremely significant level. Compared to AC0, the ear length of improved populations AC1 and AC2 decreased by 2.60% and increased by 1.57%, and there was extremely significant difference between AC1 and AC2; the number of rows per ear increased by 2.44% and 1.12%, respectively, which did not reach significant level. The barren tip length of AC1 and AC2 increased by 0.75% and 13.12%, respectively, which did not reach significant level. In condusion, the early improvement of tropical germplasm yield traits by controlling parental mixed selection was less advanced. With the progress of improvement, the phenotypic variation coefficients of most traits in the populations decreased, but the variation coefficients of some traits were smaller or increased. However, controlled parental mixed selection could maintain the genetic diversity of the population better.

Key words: Maize, Tropical germplasm, Controlled parental mixed selection, Adaptive improvement, Traits

Table 1

The results of the analysis of variance of the various symptoms of the groups"

变异来源
Variation
source
自由度
Freedom
degree
株高
Plant
height
穗位
Ear
height
穗长
Ear length
秃尖长
Barren tip
length
穗行数
Rows
per ear
行粒数
Kernels
per row
穗粗
Ear
diameter
轴粗
Axis
diameter
粒深
Grain
depth
穗重
Ear
weight
轴重
Axis
weight
单株产量
Yield per
plant
区组间Between zones 2 49.38 44.10 0.12 0.02 0.11 0.30 0.04 0.03 0.00 128.82 6.62 106.37
群体间Between groups 2 1091.63** 513.14** 0.43 0.05 0.09 2.77 0.21 0.16 0.00 64.85 4.24 47.96
误差Deviation 4 48.03 9.23 0.34 0.01 0.04 1.50 0.04 0.04 0.00 174.12 5.39 162.32

Table 2

Comparison of the averages the main agronomic traits among of groups"

变异来源
Variation source
株高
Plant height (cm)
穗位
Ear height (cm)
穗长
Ear length (cm)
秃尖长
Barren tip length (cm)
穗行数
Rows per ear
行粒数
Kernels per row
AC0 316.77 157.52 17.89 1.78 14.55 37.93
AC1 344.01 175.38 17.42 1.79 14.90 36.19
AC2 353.52 183.00 18.17 2.01 14.71 37.76
LSD0.05 6.39 5.07 0.56 0.27 0.46 1.41
LSD0.01 8.44 6.69 0.74 0.36 0.61 1.86
G (%) 11.60 16.18 1.57 12.90 1.12 -0.47
变异来源
Variation source
穗粗
Ear diameter (cm)
轴粗
Axis diameter (cm)
粒深
Grain depth (cm)
穗重
Ear weight (g)
轴重
Axis weight (g)
单株产量
Yield per plant (g)
AC0 4.02 2.08 0.97 207.78 35.03 200.45
AC1 4.44 2.46 0.99 198.72 32.66 192.76
AC2 3.94 2.04 0.95 201.45 33.76 194.69
LSD0.05 0.88 0.76 0.34 9.25 2.18 9.01
LSD0.01 1.17 1.00 0.45 12.20 2.88 11.89
G (%) -1.27 -1.57 -2.42 -3.05 -3.64 -2.87

Fig.1

Coefficients of variation of the main agronomic traits"

[1] 高翔, 陈泽辉, 祝云芳, 等. 美国Reid种质在中国玉米育种和生产中的作用. 中国农学通报, 2005, 21(1):120-123.
[2] 刘守渠, 段运平, 撖晓东, 等. 玉米核心种质群体构建与改良效果. 种子, 2019, 38(3):108-113.
[3] 赵璞, 温之雨, 董文琦, 等. 我国玉米资源研究现状及发展展望. 中国种业, 2019, 11(10):8-11.
[4] 王元东, 张春原, 段民孝, 等. 几个CIMMYT热带群体与中国温带玉米自交系杂种优势的关系. 中国农学通报, 2008, 24(1):207-211.
[5] 张世煌. 玉米种质创新和商业育种策略. 玉米科学, 2006, 14(4):1-3.
[6] 刘代惠, 李钟, 蒲全波, 等. 热带、亚热带玉米种质的改良利用. 玉米科学, 2009, 17(2):53-55.
[7] Echandi C R, Hallauer A R. Evaluation of U.S. Corn Belt and adapted tropical maize cultivars and their diallel crosses. Maydica, 1996, 41:317-324.
[8] 王建军, 雍洪军, 张晓聪, 等. 12个外来玉米群体与我国主要种质配合力效应和杂种优势分析. 作物学报, 2012, 38(12):2170-2177.
doi: 10.3724/SP.J.1006.2012.02170
[9] Yong H, Li M, Li X, et al. Breeding potential of exotic maize populations to improve an elite chinese hybrid. Agronomy Journal, 2013, 105(6):1555-1564.
doi: 10.2134/agronj2013.0050
[10] Reif J C, Fischer S, Schrag T A, et al. Broadening the genetic base of European maize heterotic pools with US Cornbelt germplasm using field and molecular marker data. Theoretical and Applied Genetics, 2010, 120(2):301-310.
doi: 10.1007/s00122-009-1055-9
[11] Salhuana W, Pollak L, Ferrer M, et al. Breeding potential of maize accessions from Argentina,Chile,USA,and Uruguay. Crop Science, 1998, 38(3):866-872.
doi: 10.2135/cropsci1998.0011183X003800030040x
[12] 李新海, 袁力行, 李晓辉, 等. 利用SSR标记划分70份我国玉米自交系的杂种优势群. 中国农业科学, 2003, 36(6):622-627.
[13] 雍洪军, 王建军, 张德贵, 等. 美洲地区主要玉米群体特征及其利用途径分析. 遗传, 2013, 35(6):703-713.
[14] 刘代惠, 李钟, 蒲全波, 等. 热带、亚热带玉米种质的改良利用. 玉米科学, 2009, 17(2):53-55.
[15] 黎裕, 王天宇. 玉米种质创新——进展与展望. 玉米科学, 2017, 25(3):11-18.
[16] 董玲, 杨德光. 热带亚热带玉米种质的研究和利用. 湖北农业科学, 2015, 54(12):2835-2839.
[17] 郭向阳, 王安贵, 吴迅, 等. 热带玉米Tuxpeno种质形成、改良及育种潜势分析. 玉米科学, 2019, 27(2):10-15.
[18] 彭泽斌, 刘新芝. 改良S1后代轮回选择在玉米群体改良中应用的研究I. 直接响应与相关响应. 作物学报, 1995, 18(6):695-701.
[19] Robertson D S. A possible technique for isolating genic DNA for quantitative traits in plants. Journal and Theoretical Biology, 1985, 117(1):1-10.
doi: 10.1016/S0022-5193(85)80161-2
[20] 李成, 王瑞莲, 王学敏, 等. 玉米雌穗主要数量性状遗传特性分析. 作物研究, 2018, 32(1):12-14.
[21] 庄铁成, 王月. 国际玉米小麦改良中心(CIMMYT)的玉米群体改良和应用项目. 玉米科学, 1994, 2(1):14-17.
[22] 张德贵, 李新海, 李明顺, 等. 四个热带亚热带玉米群体开花期性状对混合选择的直接选择响应. 作物学报, 2010, 36(1):28-35.
doi: 10.3724/SP.J.1006.2010.00028
[23] 李芦江, 杨克诚. 两种轮回选择方法对玉米群体主要性状的改良效果. 华北农学报, 2009, 24(2):30-34.
[24] 杨致远, 唐娟, 赵鑫哲, 等. 不同种质渗入对2个玉米复合群体的改良效果分析. 植物遗传资源学报, 2021, 22(3):800-806.
[1] Guo Yuqi, Wang Caijin, Wang Yang. Diversity Analysis of Seed Vigor-Related Traits of Spring Soybean Landraces in North China [J]. Crops, 2021, 37(5): 211-218.
[2] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
[3] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[4] Pei Zhichao, Zhou Jihua, Xu Xiangdong, Lan Hongliang, Wang Junying, Lang Shuwen, Zhang Weiqiang. Effects of Drought Treatment on Photosynthesis Rate, Antioxidant Properties of Leaves and Yield of Different Maize Varieties [J]. Crops, 2021, 37(5): 95-100.
[5] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[6] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[7] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[8] Zhu Xu, Hu Weili, Yang Houyong, Xu Yang, Xiang Zhen, Yang Ling, Yang Pengcheng. Analysis of Suitable Agronomic Traits for Mechanized Harvesting Mung Bean Varieties (Lines) in Nanyang Basin [J]. Crops, 2021, 37(4): 93-98.
[9] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[10] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[11] Qu Xiangchun, Wang Nai, Shi Guishan, Yu Miao, Li Haiqing, Gao Yue, Xu Ning, Chen Bingru. Application in Similarity-Difference Analysis Method on Evaluation of Grain Sorghum Hybrids [J]. Crops, 2021, 37(3): 46-50.
[12] Gao Peng, Guo Meijun, Yang Xuefang, Dong Shuqi, Wen Yinyuan, Guo Pingyi, Yuan Xiangyang. Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress [J]. Crops, 2021, 37(3): 70-77.
[13] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[14] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[15] Jin Jiangang, Tian Zaifang. Grey Correlation Analysis of Introduced Tartary Buckwheat in the Northern Shanxi [J]. Crops, 2021, 37(2): 52-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!