Crops ›› 2021, Vol. 37 ›› Issue (3): 70-77.doi: 10.16035/j.issn.1001-7283.2021.03.011

Previous Articles     Next Articles

Responses of Photosynthetic Fluorescence Parameters in Foxtail Millet and Maize Leaves under Nicosulfuron Stress

Gao Peng1(), Guo Meijun2, Yang Xuefang1, Dong Shuqi1, Wen Yinyuan1, Guo Pingyi1, Yuan Xiangyang1()   

  1. 1College of Agriculture, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Jinzhong University, Jinzhong 030600, Shanxi, China
  • Received:2020-12-15 Revised:2021-04-26 Online:2021-06-15 Published:2021-06-22
  • Contact: Yuan Xiangyang E-mail:GaoPeng202012@163.com;yuanxiangyang200@163.com

Abstract:

To clarify the photosynthetic physiological mechanism of foxtail millet and maize under nicosulfuron stress, a pot experiment was conducted by using foxtail millet (Zhangza 10, Jingu 21) and maize (Ditian 8 and Nongda 108) as the materials with five different dosages of nicosulfuron. The plant height, leaf area, SPAD value, net photosynthetic rate (Pn), stomatal conductance (Gs), transpiration rate (Tr), intercellular CO2 concentration (Ci), the maximum photochemical yield (Fv/Fm), actual photochemical efficiency [Y(II)], photochemical quenching coefficient (qP), and non-photochemical quenching coefficient (NPQ) of foxtail millet and maize were determined at 7d and 15d after treatment. The results showed that except for the 7.5g/ha nicosulfuron treatment, the plant height, leaf area, SPAD, Pn, Gs, Tr, Fv/Fm, Y(II), qP of Zhangza 10, Jingu 21, and Ditian 8 were significantly lower than the control at 7d and 15d after treatment. The decline of each index was increased with the increase of nicosulfuron dose (15.0-60.0g/ha), while Ci and NPQ had an opposite trend. From 15.0g/ha to 120.0g/ha, all the indexes of Nongda 108 had no difference compared with the control. In summary, the resistance of foxtail millet to nicosulfuron was weaker than that of maize, and there were significant differences among the varieties, part of the reason was mainly that nicosulfuron significantly reduced the chlorophyll content of sensitive varieties, although it increased the thermal dissipation of light energy, the structure of PSII was greatly damaged which eventually led to a decline in photosynthetic capacity.

Key words: Foxtail millet, Maize, Nicosulfuron, Photosynthetic parameters, Chlorophyll fluorescence parameters

Table 1

The concentration of nicosulfuron in foxtail millet and maize g/hm2"

品种Variety CK 1/8X 1/4X 1/2X 1X 2X
农大108号Nongda 108 0 - 15.0 30.0 60.0 120.0
迪甜8号Ditian 8 0 7.5 15.0 30.0 60.0 -
张杂10号Zhangza 10 0 7.5 15.0 30.0 60.0 -
晋谷21号Jingu 21 0 7.5 15.0 30.0 60.0 -

Table 2

Effects of nicosulfuron on agronomic characters of foxtail millet and maize"

品种
Variety
处理
Treatment
株高Plant height (cm) 叶面积Leaf area (cm2)
7d 15d 7d 15d
农大108号Nongda 108 CK 27.33±1.09a 43.43±1.09a 55.21±0.06a 134.15±0.54a
1/4X 27.23±1.09a 41.67±0.90a 53.00±0.30a 130.78±0.53a
1/2X 29.27±0.25a 41.50±0.25a 56.40±0.58a 133.73±0.25a
1X 27.00±0.41a 41.17±0.41a 56.00±0.53a 134.80±0.39a
2X 27.33±0.43a 43.43±0.43a 55.21±0.06a 134.15±0.48a
迪甜8号Ditian 8 CK 48.60±0.57a 68.00±0.46a 98.61±0.57a 270.33±5.78a
1/8X 46.10±0.48b 66.00±0.57b 86.36±0.56b 243.00±3.51b
1/4X 44.00±0.46c 62.50±0.58c 77.39±0.29c 204.20±3.71c
1/2X 40.40±0.53d 57.00±0.52d 69.47±0.46d 202.67±5.77d
1X 34.60±0.58e 46.00±0.36e 62.28±0.51e 180.00±5.77e
张杂10号Zhangza 10 CK 28.00±0.06a 34.07±0.67a 8.75±0.57a 23.30±0.06a
1/8X 27.30±0.12ab 33.15±0.57a 8.55±0.56a 22.90±0.05a
1/4X 25.90±0.06b 32.40±0.20a 6.78±0.49b 19.70±0.49b
1/2X 24.10±0.06c 29.00±0.58b 5.53±0.10b 17.00±0.16c
1X 20.17±1.25d 19.50±1.44c 2.72±0.42c 8.28±0.42d
晋谷21号Jingu 21 CK 35.50±0.57a 38.23±1.54a 7.77±0.57a 20.50±3.51a
1/8X 34.30±0.53a 37.23±1.34a 7.27±0.58a 19.00±5.77a
1/4X 31.10±0.46b 34.33±0.33b 7.01±0.48ab 14.50±0.06b
1/2X 29.40±0.51b 33.25±0.60b 5.54±0.24b 10.24±0.49c
1X 17.50±0.49c 19.43±0.81c 3.47±0.38c 8.30±0.22d

Fig.1

Effects of nicosulfuron on SPAD of foxtail millet and maize Different lowercase letters in the same variety indicate significant difference at the 0.05 level, the same below"

Fig.2

Effects of nicosulfuron on Pn of foxtail millet and maize"

Fig.3

Effects of nicosulfuron on Gs of foxtail millet and maize"

Fig.4

Effects of nicosulfuron on Tr of foxtail millet and maize"

Fig.5

Effects of nicosulfuron on Ci of foxtail millet and maize"

Fig.6

Effects of nicotinsulfuron on Fv/Fm of foxtail millet and maize"

Fig.7

Effects of nicotinsulfuron on Y(Ⅱ) of foxtail millet and maize"

Fig.8

Effects of nicotinsulfuron on qP and NPQ of foxtail millet and maize"

[1] 李琦, 刘亦学, 于金萍 , 等. 29%环磺酮·烟嘧磺隆·莠去津可分散油悬浮剂防治玉米田一年生杂草效果与安全性. 农药, 2018,57(11):851-854.
[2] 王太泉, 宋梁栋, 冯文涛 . 除草剂烟嘧磺隆和莠去津对不同时期小麦生长及产量的影响. 陕西农业科学, 2018,64(11):9-12.
[3] 王险峰, 关成宏, 范志伟 . 磺酰脲类除草剂安全性评价. 农药, 2010,49(8):547-551,564.
[4] 高贞攀 . 三种磺酰脲类除草剂对谷子生理特性及产量的影响. 晋中: 山西农业大学, 2015.
[5] 党建友, 裴雪霞, 王姣爱 , 等. 除草剂使用时期对小麦籽粒产量、品质及光合特性的调控效应. 中国生态农业学报, 2009,17(2):291-296.
[6] Stall W M, Bewick T A . Sweet corn cultivars respond differentially to the herbicide nicosulfuron. HortScience, 1992,27(2),131-133.
doi: 10.21273/HORTSCI.27.2.131
[7] 姚远, 高增贵, 孙艳秋 , 等. 施用烟嘧磺隆对不同生育期玉米生长、产量和营养品质的影响. 生态环境学报, 2017,26(1):171-175.
[8] O'Sullivan J, Bouw W J . Sensitivity of processing sweet corn (Zea mays) cultivars to nicosulfuron/rimsulfuron. Canadian Journal of Plant Science, 1998,78(1):151-154.
doi: 10.4141/P97-054
[9] 李威, 胡超, 高淑梅 , 等. 不同春玉米品种对烟嘧磺隆敏感性的初步研究. 作物杂志, 2014(2):64-69.
[10] 胡海军, 史振声, 吕香玲 , 等. 烟嘧磺隆对糯玉米光合特性和叶绿素荧光参数的影响. 玉米科学, 2014,22(3):77-80.
[11] 王永, 王彩云, 侯俊 , 等. 不同蜜环菌菌株对红天麻农艺性状、产量及质量的影响. 微生物学杂志, 2020,40(6):59-65.
[12] 雷晓天, 张剑伟, 郭志刚 , 等. 不同玉米品种对烟嘧磺隆敏感性及施药方法. 农药, 2008(7):540-541.
[13] 王泳超, 顾万荣, 曲天明 , 等. DCPTA与CCC复配对寒地春玉米茎秆抗倒伏特性及光合作用的影响. 中国农学通报, 2014,30(3):91-97.
[14] 董晓雯, 王金信, 毕建杰 , 等. 不同玉米品种对烟嘧磺隆的敏感性差异. 植物保护学报, 2007(2):182-186.
[15] 郭美俊, 白亚青, 高鹏 , 等. 二甲四氯胁迫对谷子幼苗叶片衰老特性和内源激素含量的影响. 中国农业科学, 2020,53(3):513-526.
[16] Guo M J, Wang Y G, Dong S Q , et al. Photochemical changes and oxidative damage in four foxtail millet varieties following exposure to sethoxydim. Photosynthetica, 2018,56(3):820-831.
doi: 10.1007/s11099-017-0734-z
[17] Yuan X Y, Guo P, Qi X , et al. Safety of herbicide Sigma Broad on Radix Isatidis (Isatis indigotica,Fort.) seedlings and their photosynthetic physiological responses. Pesticide Biochemistry and Physiology, 2013,106(1/2):45-50.
doi: 10.1016/j.pestbp.2013.04.002
[18] 原向阳, 郭平毅, 黄洁 , 等. 缺磷胁迫下草甘膦对抗草甘膦大豆幼苗光合作用和叶绿素荧光参数的影响. 植物营养与肥料学报, 2014,20(1):221-228.
[19] 刘阳, 郭平毅, 原向阳 , 等. 叶面喷施骠马对张杂谷10号光合特性及产量构成的影响. 山西农业大学学报(自然科学版), 2015,35(6):608-613.
[20] 高贞攀, 郭平毅, 原向阳 , 等. 苯磺隆和单嘧磺隆对张杂谷10号光合特性及产量构成的影响. 中国农业大学学报, 2015,20(6):36-45.
[21] 陈吉玉, 冯铃洋, 高静 , 等. 光照强度对苗期大豆叶片气孔特性及光合特性的影响. 中国农业科学, 2019,52(21):3773-3781.
[22] 王健 . 糯玉米抗烟嘧磺隆生理机制研究. 沈阳: 沈阳农业大学, 2018.
[23] 毕亚玲, 李君君, 戴玲玲 , 等. 杂草对除草剂非靶标抗性机理研究进展. 植物保护, 2020,46(5):1-5,12.
[24] 范元芳, 杨峰, 何知舟 , 等. 套作大豆形态、光合特征对玉米荫蔽及光照恢复的响应. 中国生态农业学报, 2016,24(5):608-617.
[25] 张守仁 . 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999,16(4):444-448.
[26] 李盛蓝, 谭婷婷, 范元芳 , 等. 玉米荫蔽对大豆光合特性与叶脉、气孔特征的影响. 中国农业科学, 2019,52(21):3782-3793.
[27] 张艾英, 郭二虎, 王军 , 等. 施氮量对春谷农艺性状、光合特性和产量的影响. 中国农业科学, 2015,48(15):2939-2951.
[28] 董晓雯 . 烟嘧磺隆对不同玉米品种的安全性研究. 泰安: 山东农业大学, 2007.
[1] Wang Qingbin, Nie Zhentian, Lu Jiechun, Peng Chun’e, Zhang Min, Meng Hui, Liu Zhiguo, Geng Quanzheng. Effects of Paecilomyces variotii Extract on Yield and Nitrogen Utilization of Summer Maize [J]. Crops, 2021, 37(4): 166-171.
[2] Feng Yanfei, Yang Wei, Ren Guoxin, Deng Jie, Li Wenlong, Gao Shuren. Comprehensive Evaluation of Some Maize Hybrids in Heilongjiang Province [J]. Crops, 2021, 37(4): 46-50.
[3] Tao Zhiqiang, Yan Peng, Zhang Xuepeng. Preliminary Study on the Adaptation of Photosynthetic Characteristics to High Temperature at Grain Filling Stages in Different Eras Maize Varieties [J]. Crops, 2021, 37(4): 73-79.
[4] Liu Tianhao, Zhang Yifei, Wang Huaipeng, Yang Kejun, Zhang Jinsong, Sun Yishan, Xiao Shanshan, Xu Rongqiong, Du Jiarui, Li Jiayu, Peng Cheng, Wang Baosheng. Regulating Effects of Foliar Spraying Silicon Fertilizer on Dry Matter Accumulation and Translocation, Grain Yield and Quality of Maize in Cold Region [J]. Crops, 2021, 37(4): 112-117.
[5] Liang Qian, Wu Qingshan, Ge Junzhu, Wu Xidong, Yang Yong’an, Hou Haipeng, Zhang Yao, Ma Zhiqi. Effects of Sowing Date on Rain-Fed Summer Maize Yield Formation and Resource Utilization in North China Plain [J]. Crops, 2021, 37(4): 136-143.
[6] Liu Jianzhao, Yuan Jingchao, Liang Yao, He Yu, Zhang Shuimei, Shi Haipeng, Cai Hongguang, Ren Jun. Analysis of Field Verification and Benefit on Full Maize Straw Returning with Deep Plowing Mode [J]. Crops, 2021, 37(2): 135-139.
[7] Shen Jie, Wang Yuguo, Guo Pingyi, Yuan Xiangyang. Effects of Humic Acid on Ascorbate-Glutathione Cycle in the Leaves of Foxtail Millet Seedlings under Drought Stress [J]. Crops, 2021, 37(2): 173-177.
[8] Li Zhongnan, Wang Yueren, Wu Shenghui, Liu Liwei, Qu Haitao, Sun Zhenyu, Li Guangfa. Preliminary Study on Inheritance of Haploid Natural Double Pollen Seeding Ability in Maize [J]. Crops, 2021, 37(2): 57-61.
[9] Zhang Xuepeng, Li Teng, Wang Biao, Liu Qing, Liu Hanyu, Tao Zhiqiang, Sui Peng. Study on High Temperature Stress Threshold of Maize Leaves [J]. Crops, 2021, 37(2): 62-70.
[10] Li Ruijie, Yan Peng, Wang Qingyan, Xu Yanli, Lu Lin, Dong Zhiqiang, Zhang Fenglu. Effects of 5-Aminolevulinic Acid and Ethephon on Photosynthetic Physiology of Leaves and Yield of Spring Maize in Northeast China [J]. Crops, 2021, 37(1): 135-142.
[11] Liu Jiamin, Wang Yang, Chu Xu, Qi Xin, Wang Manman, Zhao Ya'nan, Ye Youliang, Huang Yufang. Effects of Planting Density and Nitrogen Application Rate on Annual Yield and Nitrogen Use Efficiency of Wheat-Maize Rotation System [J]. Crops, 2021, 37(1): 143-149.
[12] Liu Yan, Gong Liang, Xing Yuehua, Bao Hongjing. Study on the Optimization of Organic-Inorganic Fertilization Model for Maize Based on Orthogonal Design [J]. Crops, 2021, 37(1): 168-174.
[13] Qi Jianshuang, Xia Laikun, Huang Bao, Li Chunying, Ma Zhiyan, Ding Yong, Gu Limin, Zhang Jun, Zhang Fengqi, Mu Xinyuan, Tang Baojun, Zhao Faxin, Zhang Lanxun. Discussion on the Application in the Regional Experiment of Maize Varieties by Entropy DTOPSIS Mode and Grey Situation Decision Methods [J]. Crops, 2021, 37(1): 60-67.
[14] Gong Songling, Cao Pei, Gao Zhenzhen, Li Chengwei, Liu Zhangyong, Zhu Bo. Effects of Cropping Patterns on Crop Yield and Resource Utilization Efficiency in Southern China [J]. Crops, 2021, 37(1): 68-73.
[15] Yang Juan, Jiang Yangming, Zhou Fang, Zhang Jun, Luo Haideng, Tian Shanjun. Effects of PEG Simulated Drought Stress on Seedling Morphology and Physiological Characteristics of Different Drought-Resistance Maize Varieties [J]. Crops, 2021, 37(1): 82-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!