Crops ›› 2022, Vol. 38 ›› Issue (1): 124-129.doi: 10.16035/j.issn.1001-7283.2022.01.018

Previous Articles     Next Articles

Analysis of Growth Characteristics and Economic Benefit of Mechanical Transplanted Japonica Rice with Applying Panicle Nitrogen under Rotation of Paddy-Upland

Long Ruiping1(), Zhang Chaozhong2, Ge Qinying2, Wan Weidong2, Wang Qin2, Li Guiyong1, Xia Qiongmei1, Zhu Haiping1, Yang Congdang1   

  1. 1Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, Yunnan, China
    2Agricultural Technique Extension Station, Longyang District, Baoshan 678000, Yunnan, China
  • Received:2021-04-01 Revised:2021-05-12 Online:2022-02-15 Published:2022-02-16

Abstract:

In order to study the cultivation techniques of rice nitrogen reduction in paddy-upland rotation system, in the wheat-rice and broad bean-rice rotation system in the plateau Japonica rice region, Longke 16, a local rice variety, was used as the material, and six nitrogen (N) rates of 0, 90, 120, 150, 180 and 210kg/ha were topdressed as flower promoting and flower preserving fertilizer in ratio of 6:4. Local recommended N management (N 285kg/ha in total, evenly divided and applied as basal, tillering, flower promoting and flower preserving fertilizer in ratio of 0.25:0.25:0.25:0.25) was used as control. The population growth characteristics and economic benefits of rice under two rotation systems were systematically compared. The results showed that in the two rotation patterns, the yield of rice was the same as that of the control when 180kg/ha panicle N was applied without basal N and tillering N, and in the critical leaf stage of productive tillers of rice, the lowest tillering number of rice was 91.09% and 87.62% of the control, and the highest was 95.05% and 91.11% of the control, respectively, under the wheat-rice and broad bean-rice rotation system without basal N and tillering N application. There was no significant difference in the number of effective panicles in the mature period from the control, and applying panicle N without basal N and tillering N could significantly increase percentage of earbearing tillers. Compared with no N application, the effective panicle, dry matter accumulation and population growth rate at filling stage of rice increased after applying panicle N. The application of 180kg/ha pure N without basal N and tillering N as panicle fertilizer reduced 36.84% of N input compared with the control, and the economic benefit of rice was the highest. The goal of saving cost and increasing efficiency of rice was achieved.

Key words: Paddy-upland rotation, Rice, Panicle N, Population characteristics, Economic benefit

Fig.1

Effects of different panicle N application rate on rice yield Different letters indicate significant difference at the 5% level, the same below"

Table 1

Pearson correlation coefficients between yield and its components"

指标
Index
轮作模式
Rotation model
产量
Yield
有效穗数
Effective panicles
实粒数
Filled grain number
总颖花量
Total spikelets
结实率
Seed-setting rate
产量Yield 麦―稻Wheat-rice 1
豆―稻Broad bean-rice 1
有效穗数 麦―稻Wheat-rice 0.668** 1
Effective panicles 豆―稻Broad bean-rice 0.650** 1
实粒数 麦―稻Wheat-rice -0.032 -0.436 1
Filled grain number 豆―稻Broad bean-rice 0.372 0.241 1
总颖花量 麦―稻Wheat-rice 0.752** 0.889** -0.003 1
Total spikelets 豆―稻Broad bean-rice 0.709** 0.954** 0.491* 1
结实率 麦―稻Wheat-rice -0.666** -0.650** 0.096 -0.786** 1
Seed-setting rate 豆―稻Broad bean-rice -0.415 -0.302 -0.290 -0.473* 1

Table 2

Effects of different panicle N application rate on tillers number and percentage of productive tiller of rice"

处理
Treatment
CLPT茎蘖数
Tiller number of CLPT (×104/hm2)
分蘖能力
Tillering ability (%)
有效穗数
Effective panicles (×104/hm2)
成穗率
Percentage of productive tiller (%)
麦―稻
Wheat-rice
豆―稻
Broad bean-rice
麦―稻
Wheat-rice
豆―稻
Broad bean-rice
麦―稻
Wheat-rice
豆―稻
Broad bean-rice
麦―稻
Wheat-rice
豆―稻
Broad bean-rice
N0 204.24b 204.98b 91.09a 87.94a 238.28e 234.58d 91.88b 85.34c
N90 213.12b 210.90b 95.05a 90.48a 247.16de 253.82c 94.48ab 86.97bc
N120 209.42b 204.98b 93.40a 87.94a 252.34cd 264.18bc 86.55c 85.34c
N150 206.46b 212.38b 92.08a 91.11a 259.00bc 273.80ab 83.84c 89.83a
N180 213.12b 204.24b 95.05a 87.62a 267.88b 275.28ab 95.90a 89.62a
N210 205.72b 210.90b 91.75a 90.48a 283.42a 278.24a 93.85ab 88.53ab
CK 224.22a 233.10a 286.38a 272.32ab 83.70c 84.70c

Table 3

Effects of different panicle N application rate on population growth characteristics of rice"

轮作模式
Rotation
model
处理
Treatment
干物质积累量
Dry matter accumulation (t/hm2)
干物质阶段增量
Dry matter phase accumulation (t/hm2)
群体生长率
Population growth rate [g/(m2·d)]
表观输出量
Exportation
(t/hm2)
表观输出率
Exportion rate
(%)
倒4叶期
Inverse 4th
leaf stage
抽穗期
Heading
成熟期
Maturity
倒4叶至抽穗期
Inverse 4th
leaf-heading stage
抽穗至成熟期
Heading-
maturity
倒4叶至抽穗期
Inverse 4th
leaf-heading stage
抽穗至成熟期
Heading-
maturity
麦―稻 N0 1.09b 7.70f 13.83e 6.61e 6.14c 15.37e 13.06c 0.53a 8.15a
Wheat-rice N90 1.09b 8.11e 14.93d 7.03d 6.82b 16.34d 14.50b 0.35ab 5.03bc
N120 1.11b 8.37d 15.25cd 7.26cd 6.87ab 16.89cd 14.62ab 0.31ab 4.31bcd
N150 1.11b 8.54cd 15.56bc 7.42bc 7.02ab 17.26bc 14.94ab 0.22b 2.99cd
N180 1.10b 8.73bc 16.16a 7.63b 7.43a 17.75b 15.82a 0.12b 1.55d
N210 1.10b 9.21a 15.94ab 8.12a 6.73b 18.88a 14.32b 0.52a 6.68ab
CK 1.39a 8.81b 15.96ab 7.43bc 7.15ab 17.27bc 15.21ab 0.48a 6.38ab
平均 1.14 8.50 15.38 7.36 6.88 17.11 14.64 0.36 5.01
豆―稻 N0 1.38b 7.60f 13.66e 6.22f 6.07c 14.47f 12.91c 0.52a 7.96a
Broad bean-rice N90 1.32b 7.96e 14.63d 6.64e 6.66ab 15.44e 14.18ab 0.48a 7.04ab
N120 1.38b 8.43d 15.23c 7.04d 6.80ab 16.38d 14.47ab 0.33a 4.52bc
N150 1.35b 8.59cd 15.68bc 7.24cd 7.08a 16.85cd 15.07a 0.30a 4.09bc
N180 1.34b 8.70c 15.86b 7.36c 7.16a 17.11c 15.24a 0.28a 3.79c
N210 1.34b 9.05b 15.49bc 7.70b 6.44bc 17.91b 13.70bc 0.45a 5.67abc
CK 1.46a 9.80a 16.48a 8.34a 6.68ab 19.40a 14.22ab 0.42a 4.93bc
平均 1.37 8.59 15.29 7.22 6.70 16.79 14.25 0.40 5.43
轮作模式
Rotation model (R)
624.71** 7.02* 0.74 14.16** 2.74 14.13** 2.69 0.77 0.59
施氮量Nitrogen rate (N) 40.12** 150.94** 41.10** 129.46** 6.90** 129.75** 6.88** 5.25** 6.50**
R×N 9.42** 18.29** 1.55 24.39** 0.37 24.39** 0.37 0.76 1.00

Table 4

Analysis on economic benefits of rice with different panicle N application rate 元/hm2 yuan/hm2"

轮作模式
Rotation model
处理
Treatment
水稻产值
Rice output value
肥料成本
Cost of fertilizer
施肥成本
Fertilization cost
经济效益
Economic benefits
新增产值
New output value
新增经济效益
New economic benefits
N0 27 488.41c 0 0 27 488.41a
N90 29 315.83b 2211 190 26 914.83a 1827.42 -573.58
N120 29 457.29b 2373 190 26 894.29a 1968.88 -594.12
麦―稻 N150 29 718.00ab 2535 190 26 993.00a 2229.59 -495.41
Wheat-rice N180 30 939.45ab 2697 190 28 052.45a 3451.04 564.04
N210 30 357.22ab 2859 190 27 308.22a 2868.81 -180.19
CK 31 365.35a 3264 290 27 811.35a 3876.94 322.94
平均 29 805.93 2277.00 177.14 27 351.79 2703.78 -159.39
N0 26 950.30c 0 0 26 950.30ab
N90 29 054.42ab 2211 190 26 653.42ab 2104.12 -296.88
N120 29 165.12ab 2373 190 26 602.12ab 2214.82 -348.18
豆―稻 N150 30 101.10ab 2535 190 27 376.10a 3150.80 425.80
Broad bean-rice N180 30 363.73a 2697 190 27 476.73a 3413.43 526.43
N210 28 347.70bc 2859 190 25 298.70b 1397.40 -1651.60
CK 29 678.34ab 3264 290 26 124.34ab 2728.04 -825.96
平均 29 094.39 2277.00 177.14 26 640.24 2501.43 -361.73
[1] Gong P, Liang L, Zhang Q. China must reduce fertilizer use too. Nature, 2011, 474(7347):284-285.
[2] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径. 土壤学报, 2008, 45(5):915-924.
[3] 晏娟, 尹斌, 张绍林, 等. 太湖地区稻麦轮作系统中氮肥效应的研究. 南京农业大学学报, 2009, 32(1):61-66.
[4] Miao Y, Stewart B A, Zhang F. Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 2011, 31(2):397-414.
doi: 10.1051/agro/2010034
[5] 彭少兵, 黄见良, 钟旭华, 等. 提高中国稻田氮肥利用率的研究策略. 中国农业科学, 2002, 35(9):1095-1103.
[6] 章星传, 黄文轩, 朱宽宇, 等. 施氮量对不同水稻品种氮肥利用率与农艺性状的影响. 作物杂志, 2018(4):69-78.
[7] 陈盈, 杜宝芝, 王文选, 等. 辽宁省不同地区水稻减氮稳产肥密结构研究. 作物杂志, 2020(4):183-187.
[8] 金相灿. 中国湖泊富营养化. 北京: 中国环境科学出版社, 1990:1-5.
[9] 彭显龙, 潘新杰, 秦迎春, 等. 基蘖肥氮量与寒地水稻产量和氮效率的关系. 中国土壤与肥料, 2016(2):72-77.
[10] 杨从党, 龙瑞平, 夏琼梅, 等. 云南水稻氮肥减量后移增效技术研究. 中国稻米, 2019, 25(3):56-59,62.
[11] 马巍, 齐春艳, 刘亮, 等. 氮肥减量后移对超级稻吉粳88氮素利用效率及产量的影响. 东北农业科学, 2016, 41(1):25-29.
[12] 秦德荣, 王沐清, 苏士华, 等. 氮肥运筹比例对水稻群体质量的影响. 江苏农业科学, 1993(3):44-46.
[13] 杜永林, 苏祖芳. 氮肥运筹对水稻抽穗期群体源库质量的影响. 耕作与栽培, 1999(2):20-23.
[14] 王连敏, 郭杰, 石玉文, 等. 寒地水稻产量形成的源库关系分析. 黑龙江农业科学, 2005(4):5-7.
[15] 李成亮, 孔宏敏, 何园球. 施肥结构对旱地红壤有机质和物理性质的影响. 水土保持学报, 2004, 18(6):116-119.
[16] 李清华, 王飞, 林诚, 等. 水旱轮作对冷浸田土壤碳、氮、磷养分活化的影响. 水土保持学报, 2015, 29(6):115-119.
[17] 王飞, 李清华, 林诚, 等. 冷浸田水旱轮作对作物生产及土壤特性的影响. 应用生态学报, 2015, 26(5):184-191.
[18] 龙瑞平, 张朝钟, 戈芹英, 等. 不同轮作模式下基于机插粳稻稳产和氮肥高效的氮肥运筹方式. 植物营养与肥料学报, 2020, 26(4):646-656.
[19] 朱兆良, 金继运. 保障我国粮食安全的肥料问题. 植物营养与肥料学报, 2013, 19(2):259-273.
[20] 范立慧, 徐珊珊, 侯朋福, 等. 不同地力下基蘖肥运筹比例对水稻产量及氮肥吸收利用的影响. 中国农业科学, 2016, 49(10):1872-1884.
[21] 凌启鸿. 作物群体质量. 上海: 上海科学技术出版社, 2000:106-107.
[22] 丁艳锋, 刘胜环, 王绍华, 等. 氮素基、蘖肥用量对水稻氮素吸收与利用的影响. 作物学报, 2004, 30(8):762-767.
[23] 王丽妍, 杨成林, 徐惠风. 氮肥运筹对寒地水稻生长及产量的影响. 东北农业科学, 2017, 42(5):15-19.
[24] 张洪程, 吴桂成, 李德剑, 等. 杂交粳稻13.5t/ hm2超高产群体动态特征及形成机制的探讨. 作物学报, 2010, 36(9):1547-1558.
[25] 张军, 谢兆伟, 朱敏敏, 等. 不同施氮时期对水稻剑叶光合特性及稻米品质的影响. 江苏农业学报, 2008(5):656-661.
[26] 巨晓棠, 张翀. 论合理施氮的原则和指标. 土壤学报, 2021, 58(1):1-13.
[27] 丁武汉, 谢海宽, 徐驰, 等. 一次性施肥技术对水稻-油菜轮作系统氮素淋失特征及经济效益的影响. 应用生态学报, 2019, 30(4):1097-1109.
[28] 周雯雯, 贾浩然, 张月, 等. 不同类型新型肥料对双季稻产量、氮肥利用率和经济效益的影响. 植物营养与肥料学报, 2020, 26(4):657-668.
[1] Liu Menghong, Wang Zhijun, Li Hongyu, Zhao Haicheng, Lü Yandong. Effects of Fertilization Method and Nitrogen Application Rate on Yield, Quality and Nitrogen Utilization of Rice in Cold Region [J]. Crops, 2022, 38(1): 102-109.
[2] Liu Lei, Song Nana, Qi Xiaoli, Cui Kehui. Research Advances on the Relationship between Root Characteristics and Nitrogen Uptake and Utilization Efficiency in Rice [J]. Crops, 2022, 38(1): 11-19.
[3] He Yuxuan, Li Yajuan, Zhou Mingzhuo, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Calcium Peroxide Application on Yield and Greenhouse Gas Emissions under Full-Rate Straw Returning in a Double Rice-Cropping System [J]. Crops, 2022, 38(1): 116-123.
[4] Cui Shiyou, Zhang Yang, Zhai Caijiao, Dong Shiqi, Zhang Jiao, Chen Pengjun, Han Jijun, Dai Qigen. Performance of Yield and Quality of Japonica Rice under Brackish Water Irrigation on the Reclaimed Tidal Flat [J]. Crops, 2022, 38(1): 137-141.
[5] Xie Huimin, Wu Ke, Liu Wenqi, Wei Guoliang, Lu Xian, Li Zhuanglin, Wei Shanqing, Liang He, Jiang Ligeng. Effects of Partial Substitution of Seaweed Fertilizers and Microbial Inoculant for Chemical Fertilizer on Rice Yield and Its Components [J]. Crops, 2022, 38(1): 161-166.
[6] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[7] Li Runqing, Shen Yong, Zhu Kuanyu, Wang Zhiqin, Yang Jianchang. Effects of Nitrogen Application Rates on the Grain Yield, Starch RVA Profile Characteristics and Physicochemical Properties of Super Rice Nanjing 9108 [J]. Crops, 2022, 38(1): 205-212.
[8] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[9] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[10] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[11] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[12] Li Xu, Fu Lidong, Wang Yu, Sui Xin, Ren Hai, Lü Xiaohong, Ma Chang, Du Meng, Mao Ting. Effects of Genetic Interaction between DEP1 and NRT1.1B on Nitrogen Use in Rice [J]. Crops, 2021, 37(6): 22-27.
[13] Yu Julong, Zhang Guo, Zhao Laicheng, Yao Kebing, Luo Guanghua, Fang Jichao, Zhang Jianhua, Jiao Yang, Shu Zhaolin. Control Effects of Different Seed Treatments on the Rice Leaf Folder under Machine-Planting Condition [J]. Crops, 2021, 37(6): 224-229.
[14] Zhang Jun, Deng Aixing, Shang Ziyin, Tang Zhiwei, Yan Shengji, Zhang Weijian. Innovative Rice Cropping for Higher Yield and Less CH4 Emission under Crop Straw Incorporation [J]. Crops, 2021, 37(6): 230-235.
[15] Yu Meixia, Deng Haodong, Tan Jing’ai, Song Guiting, Wu Guangliang, Chen Liping, Liu Ruiqi, Zhou Andong, He Haohua, Bian Jianmin. Detection of QTL for Root Length and Bud Length at Germination Stage in Low Temperature Using CSSLs in Rice (Oryza sativa) [J]. Crops, 2021, 37(6): 36-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!