Crops ›› 2021, Vol. 37 ›› Issue (6): 145-151.doi: 10.16035/j.issn.1001-7283.2021.06.023

Previous Articles     Next Articles

Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice

Wang Qi1(), Li Meijuan2, Zhang Jia’en3,4,5,6(), Tang Jiaxin1, Zeng Wenjing1, Zhou Lei1, Yang Qingxin1, Jiang Mingmin1, Wu Jiayuan1, Luo Mingzhu1()   

  1. 1College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, China
    2Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
    3College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, Guangdong,China
    4Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, Guangzhou 510642, Guangdong, China
    5Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture, Guangzhou 510642, Guangdong, China
    6Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, Guangzhou 510642, Guangdong, China
  • Received:2021-01-21 Revised:2021-05-12 Online:2021-12-15 Published:2021-12-16
  • Contact: Zhang Jia’en,Luo Mingzhu E-mail:312548392@qq.com;jeanzh@scau.edu.cn;lmzhd2701@scau.edu.cn

Abstract:

To investigate the effects of rice-fish co-culture on chlorophyll content (SPAD value), fluorescence parameters and yield in rice, the field plot experiment of three treatments was designed with three field fish stocking densities, 9 000 tails/ha (M1), 15 000 tails/ha (M2), and 21 000 tails/ha (M3), taking the rice monoculture as control (CK), the SPAD values and chlorophyll fluorescence parameters of rice leaves were determined respectively, and rice yield and its components were measured. The results showed that compared with CK, the PSⅡ maximum photochemical quantum yield (Fv/Fm) and PSII potential photochemical activity (Fv/Fo) of rice leaves of the co-culture treatment significantly increased at tillering stage and maturity stage; At maturity stage, the non-photochemical quenching coefficient (qN and NPQ) of rice leaves were significantly reduced in M1 and M2 treatments; At heading stage, SPAD value of rice leaves of three rice-fish co-culture treatments were significantly increased compared with CK. The seed-setting rates of M1, M2 and M3 treatments were also significantly increased, the actual yield of rice under treatments of rice-fish co-culture showed no significant difference, and the yield of field fish showed a trend of M2 > M3 > M1, but there was no significant difference among them. Correlation analysis results showed that SPAD value, Fv/Fo, Fv/Fm and productive panicle, seed-setting rate and yield were positively correlated, while the qN and NPQ negatively correlated with grain number per panicle. To sum up, the rice-fish co-culture could improve the efficiency of conversion of light energy and the photosynthetic characteristics of rice, reduce the heat dissipation energy, this would help to sustain or even improve rice yield, and 15 000 tails/ha was the more suitable stocking density of field fish.

Key words: Rice-fish co-culture, SPAD, Chlorophyll fluorescence parameter, Yield

Fig.1

Rice leaves SPAD value under different rice-fish co-culture treatments Different lowercase letters indicate significant differences between different treatments (P < 0.05). The same below"

Table 1

Chlorophyll fluorescence parameters of sword-leaves at tillering stage of rice under different rice-fish co-culture treatments"

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.302±0.001a 0.56±0.004a 1.00±0.02a 5.20±0.07b 0.839±0.002b
M1 0.318±0.004a 0.54±0.014a 0.92±0.05a 5.64±0.14a 0.849±0.003a
M2 0.320±0.004a 0.55±0.040a 0.98±0.13a 5.58±0.08a 0.848±0.002a
M3 0.296±0.020a 0.57±0.019a 1.04±0.06a 5.59±0.04a 0.848±0.001a

Table 2

Chlorophyll fluorescence parameters of sword-leaves at heading stage of rice under different rice-fish co-culture treatments"

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.320±0.013a 0.58±0.030a 1.08±0.12a 5.19±0.02b 0.838±0.001b
M1 0.332±0.009a 0.56±0.012a 0.96±0.04a 5.34±0.06ab 0.842±0.002ab
M2 0.323±0.002a 0.58±0.004a 1.05±0.02a 5.49±0.12a 0.846±0.003a
M3 0.337±0.004a 0.59±0.007a 1.08±0.03a 5.44±0.07ab 0.845±0.002a

Table 3

Chlorophyll fluorescence parameters of sword-leaves at maturity stage of rice under different rice-fish co-culture treatments"

处理Treatment Y qN NPQ Fv/Fo Fv/Fm
CK 0.214±0.041a 0.54±0.009a 0.84±0.03a 3.19±0.08b 0.761±0.005b
M1 0.208±0.038a 0.49±0.007c 0.70±0.02c 3.63±0.21a 0.783±0.010a
M2 0.208±0.050a 0.50±0.004bc 0.73±0.01bc 3.71±0.06a 0.788±0.002a
M3 0.229±0.028a 0.52±0.012ab 0.81±0.04ab 3.84±0.09a 0.793±0.004a

Table 4

Rice yield and its components, field fish yield and its survival rate under different rice-fish co-culture treatments"

处理
Treatment
有效穗数
Productive panicle
(×104/hm2)
穗粒数
Grain number
per panicle
千粒重
1000-grain
weight (g)
结实率
Seed-setting
rate (%)
水稻产量
Rice yield
(t/hm2)
存活率
Survival
rate (%)
田鱼产量
Fish yield
(kg/hm2)
CK 447.22±10.02a 105.26±1.09c 18.57±0.10a 68.92±0.76b 5.02±0.13a / /
M1 435.00±24.11a 123.97±4.87a 19.76±0.51a 73.29±0.66a 5.03±0.31a 62.96±9.71a 177.78±23.37a
M2 472.50±11.46a 116.71±1.59ab 19.49±0.45a 74.19±1.86a 5.47±0.39a 56.67±5.05a 189.11±27.31a
M3 500.00±28.83a 113.52±2.95bc 19.76±0.25a 73.15±0.72a 5.60±0.37a 45.71±10.72a 182.50±4.82a

Table 5

Correlation analysis of SPAD value,chlorophyll fluorescence parameters and rice yield and its components at maturity"

指标
Index
SPAD qN NPQ Fv/Fo Fv/Fm 有效穗数
Productive
panicle
穗粒数
Grain number
per panicle
千粒重
1000-grain
weight
结实率
Seed-setting
rate
qN -0.569
NPQ -0.501 0.983**
Fv/Fo 0.492 -0.371 -0.209
Fv/Fm 0.513 -0.394 -0.233 0.998**
有效穗数Productive panicle 0.708* -0.123 0.015 0.702* 0.711*
穗粒数Grain number per panicle 0.274 -0.686* -0.649* 0.208 0.242 0.131
千粒重1000-grain weight 0.350 -0.421 -0.313 0.470 0.476 0.357 0.543
结实率Seed-setting rate 0.658* -0.473 -0.360 0.630* 0.643* 0.662* 0.433 0.382
产量Yield 0.628* -0.131 -0.002 0.605* 0.615* 0.843** 0.178 0.491 0.831**
[1] 游修龄. 稻田养鱼——传统农业可持续发展的典型之一. 农业考古, 2006(4):222-224.
[2] 吴敏芳, 郭梁, 张剑, 等. 稻鱼共作对稻纵卷叶螟和水稻生长的影响. 浙江农业科学, 2016, 57(3):446-449.
[3] 吕广动, 黄璜, 王忍, 等. 紫云英还田耦合稻鱼共生对双季水稻群体生长特性及产量的影响. 生态学杂志, 2020, 39(12):4057-4067.
[4] 张剑, 胡亮亮, 任伟征, 等. 稻鱼系统中田鱼对资源的利用及对水稻生长的影响. 应用生态学报, 2017, 28(1):299-307.
[5] Ren W, Hu L, Zhang J, et al. Can positive interactions between cultivated species help to sustain modern agriculture? Frontiers in Ecology and the Environment, 2014, 12(9):507-514.
doi: 10.1890/130162
[6] 张守仁. 叶绿素荧光动力学参数的意义及讨论. 植物学通报, 1999, 16(4):444.
[7] Xu Q, Ma X, Lü T, et al. Effects of water stress on fluorescence parameters and photosynthetic characteristics of drip irrigation in rice. Water, 2020, 12(1):289.
doi: 10.3390/w12010289
[8] Jumrani K, Bhatia V S, Pandey G P. Impact of elevated temperatures on specific leaf weight,stomatal density,photosynthesis and chlorophyll fluorescence in soybean. Photosynthesis Research, 2017, 131(3):333-350.
doi: 10.1007/s11120-016-0326-y
[9] 徐晨, 刘晓龙, 李前, 等. 供氮水平对盐胁迫下水稻叶片光合及叶绿素荧光特性的影响. 植物学报, 2018, 53(2):185-195.
[10] Guo Y Y, Yu H Y, Kong D S, et al. Effects of drought stress on growth and chlorophyll fluorescence of Lycium ruthenicum Murr. seedlings. Photosynthetica, 2016, 54(4):524-531.
doi: 10.1007/s11099-016-0206-x
[11] Zhang M, Tang S, Huang X, et al. Selenium uptake,dynamic changes in selenium content and its influence on photosynthesis and chlorophyll fluorescence in rice (Oryza sativa L.). Environmental and Experimental Botany, 2014, 107:39-45.
doi: 10.1016/j.envexpbot.2014.05.005
[12] Li M, Li R, Zhang J, et al. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields. Basic and Applied Ecology, 2019, 40:67-77.
doi: 10.1016/j.baae.2019.09.003
[13] 应晓成, 朱奕雯, 蒋铭伟, 等. 不同稻田综合种养模式对南粳46水稻生长影响的研究. 安徽农学通报, 2019, 25(16):38-39.
[14] Teng Q, Hu X, Luo F, et al. Influences of introducing frogs in the paddy fields on soil properties and rice growth. Journal of Soils and Sediments, 2016, 16(1):51-61.
doi: 10.1007/s11368-015-1183-6
[15] Teng Q, Hu X, Cheng C, et al. Ecological effects of rice-duck integrated farming on soil fertility and weed and pest control. Journal of Soils and Sediments, 2016, 16(10):2395-2407.
doi: 10.1007/s11368-016-1455-9
[16] Xie J, Hu L, Tang J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(50):E1381-E1387.
[17] 胡文河, 齐义杰, 孙明春, 等. 水稻稀植后光合生理特性的研究. 吉林农业大学学报, 2000, 22(4):11-14.
[18] 侯红乾, 林洪鑫, 刘秀梅, 等. 长期施肥处理对双季晚稻叶绿素荧光特征及籽粒产量的影响. 作物学报, 2020, 46(2):280-289.
[19] 杨艳君, 赵红梅, 曹玉风, 等. 施肥和密度对张杂谷5号叶绿素荧光特性的影响. 华北农学报, 2015, 30(6):201-208.
[20] Lin Y, Hu Y, Ren C, et al. Effects of nitrogen application on chlorophyll fluorescence parameters and leaf gas exchange in naked oat. Journal of Integrative Agriculture, 2013, 12(12):2164-2171.
doi: 10.1016/S2095-3119(13)60346-9
[21] 刘福妹, 劳庆祥, 庞圣江, 等. 不同氮素水平对米老排苗期生长和叶绿素荧光特性的影响. 西北林学院学报, 2018, 33(1):62-67.
[22] 郭海松, 罗衡, 李丰, 等. 不同水稻栽培密度下青田稻—鱼共生系统的土壤肥力. 水产学报, 2020, 44(5):805-815.
[23] 隆斌庆, 陈灿, 黄璜, 等. “稻+鱼+再生稻”模式对稻田土壤氮、磷、钾养分含量的影响. 作物研究, 2019, 33(5):408-414.
[24] 肖向予, 李艳蔷. 稻鳅共作对土壤性质及水稻产量构成的影响. 安徽农业科学, 2017, 45(12):31-33.
[25] Hu L, Zhang J, Ren W, et al. Can the co-cultivation of rice and fish help sustain rice production?. Scientific Reports, 2016, 6(1):28728.
doi: 10.1038/srep28728
[26] 王复标, 黄福灯, 程方民, 等. 水稻生育后期叶片早衰突变体的光合特性与叶绿体超微结构观察. 作物学报, 2012, 38(5):871-879.
[27] 魏海燕, 张洪程, 马群, 等. 不同氮肥利用效率水稻基因型剑叶光合特性. 作物学报, 2009, 35(12):2243-2251.
[28] 郭相平, 王甫, 王振昌, 等. 不同灌溉模式对水稻抽穗后叶绿素荧光特征及产量的影响. 灌溉排水学报, 2017, 36(3):1-6.
[29] 吴晓丽, 汤永禄, 李朝苏, 等. 不同生育时期渍水对冬小麦旗叶叶绿素荧光及籽粒灌浆特性的影响. 中国生态农业学报, 2015, 23(3):309-318.
[1] Tang Gang, Liao Ping, Sui Feng, Lü Weisheng, Zhang Jun, Zeng Yongjun, Huang Shan. Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System [J]. Crops, 2021, 37(6): 101-107.
[2] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[3] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[4] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[5] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[6] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[7] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[8] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[9] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[10] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[11] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[12] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[13] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[14] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[15] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!