Crops ›› 2021, Vol. 37 ›› Issue (6): 101-107.doi: 10.16035/j.issn.1001-7283.2021.06.016

Previous Articles     Next Articles

Effects of Moldboard Plow Tillage under all Straw Returning in Late Rice Season on Greenhouse Gas Emissions and Yield in Double Rice-Cropping System

Tang Gang1(), Liao Ping1, Sui Feng2, Lü Weisheng3, Zhang Jun4, Zeng Yongjun1, Huang Shan1()   

  1. 1Ministry of Education and Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding/College of Agriculture, Jiangxi Agricultural University, Nanchang 330045, Jiangxi, China
    2Ganzhou Institute of Tobacco Sciences, Ganzhou 341000, Jiangxi, China
    3Jiangxi Institute of Red Soil, Nanchang 331717, Jiangxi, China
    4Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
  • Received:2020-11-04 Revised:2020-12-07 Online:2021-12-15 Published:2021-12-16
  • Contact: Huang Shan E-mail:1414650688@qq.com;ecohs@126.com

Abstract:

Moldboard plough tillage (PT) is beneficial for returning straw to the field. In order to explore the influence of different farming measures on double-season rice yield and greenhouse gas emissions, a field trial of two treatments, rotary tillage (RT) and PT, were conducted to examine the effects of PT in late season with full incorporation of straw on CH4 and N2O emissions, and grain yield. The CH4 and N2O fluxes were measured using a static chamber gas chromatography method in current late season and early season of next year. The results showed that PT significantly reduced CH4 accumulation emissions flux, global warming potential and greenhouse gas intensity in the current late season by 19.04%, 19.19% and 22.02%, respectively, compared to RT. However, no significant influence of tillage on N2O emissions was found. In addition, greenhouse gas emissions were not significantly affected by tillage in the next early season. Thus, the effect of PT on the reduction of greenhouse gas emissions only appeared in the current late season. In addition, the grain yield and its components in both seasons were not different between PT and RT. In the short term, plowing in late rice therefore benefited the reduction of greenhouse gas emissions without impairing the rice yield with full straw incorporation

Key words: Double rice-cropping system, Tillage practice, Greenhouse gas emissions, Yield

Fig.1

The dynamics of water depth in the field during 2018-2019"

Fig.2

The dynamics of temperature in the field during 2018-2019"

Table 1

Effects of moldboard plow tillage under all straw return in the late rice season on grain yield and its components in double rice-cropping system"

年份
Year
季别
Season
处理
Treatment
有效穗数
Effective panicles (×104/hm2)
穗粒数
Grains per panicle
千粒重
1000-grain weight (g)
结实率
Seed setting rate (%)
产量
Yield (kg/hm2)
2018 晚稻 RT 281.58aA 179.13aA 22.43aA 82.40aA 8658.49aA
PT 294.36aA 177.08aA 22.61aA 82.45aA 8887.78aA
2019 早稻 RT 280.92aA 150.69aB 22.69aA 78.14aA 7441.03aB
RT 289.15aA 152.38aB 22.53aA 80.46aA 7497.44aB

Fig.3

Effects of moldboard plow tillage under all straw return in the late rice season on CH4 emission fluxes in double rice-cropping system"

Fig.4

Effects of moldboard plow tillage under all straw return in the late rice season on N2O emission fluxes in double rice-cropping system"

Table 2

Effects of moldboard plow tillage under all straw return in the late rice season on CH4 and N2O accumulation emission fluxes, GWP, and GHGI in double rice-cropping system"

年份
Year
季别
Season
处理
Treatment
CH4累积排放量
CH4 accumulation emission flux (kg/hm2)
N2O累积排放量
N2O accumulation emission flux(kg/hm2)
综合温室效应
GWP (kg/hm2)
温室气体排放强度
GHGI (kg/kg)
2018 晚稻 RT 372.91aA 0.25aA 9398.38aA 1.09aA
PT 301.90bA 0.16aA 7594.91bA 0.85bA
2019 早稻 RT 134.40aB -0.05aB 3344.21aB 0.45aB
RT 154.09aB -0.06aB 3833.49aB 0.51aB
[1] 张玉铭, 胡春胜, 张佳宝, 等. 农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展. 中国生态农业学报, 2011, 19(4):966-975.
[2] 廖萍, 眭锋, 汤军, 等. 施用生物炭对双季稻田综合温室效应和温室气体排放强度的影响. 核农学报, 2018, 32(9):1821-1830.
[3] 朱相成. 增密减氮对东北水稻产量和氮肥效率及温室气体排放的影响. 北京:中国农业科学院, 2016.
[4] Food and Agriculture Organization (FAO) of the United Nations. Country STAT. (2020-03-20) [2020-10-30]. http://www.fao.org/home/en/.
[5] 彭华, 纪雄辉, 吴家梅, 等. 双季稻田不同种植模式对CH4和N2O排放的影响研究. 生态环境学报, 2015, 24(2):190-195.
[6] Guo J, Song Z F, Zhu Y J. The characteristics of yield-scaled methane emission from paddy field in recent 35-year in China:A meta-analysis. Journal of Cleaner Production, 2017, 161(10):1044-1050.
doi: 10.1016/j.jclepro.2017.06.073
[7] 李俊, 于强, 同小娟. 农业活动对土壤CH4的影响研究. 中国生态农业学报, 2003, 11(4):27-28.
[8] 王蕴霏. 稻田耕作制度对CH4气体排放影响的研究进展. 中国农学通报, 2015, 31(29):141-147.
[9] 成臣, 曾勇军, 杨秀霞, 等. 不同耕作方式对稻田净增温潜势和温室气体强度的影响. 环境科学学报, 2015, 35(6):1887-1895.
[10] 肖小平, 伍芬琳, 黄风球, 等. 不同稻草还田方式对稻田温室气体排放影响研究. 农业现代化研究, 2007, 28(5):629-632.
[11] 张岳芳, 郑建初, 陈留根, 等. 麦秸还田与土壤耕作对稻季CH4和N2O排放的影响. 生态环境学报, 2009, 18(6):2334-2338.
[12] 白小琳, 张海林, 陈阜, 等. 耕作措施对双季稻田CH4和N2O排放的影响. 农业工程学报, 2010, 26(1):282-289.
[13] Jiang Y, Liao P, Van Gestel N, et al. Lime application lowers the global warming potential of a double rice cropping system. Geoderma, 2018, 325:1-8.
doi: 10.1016/j.geoderma.2018.03.034
[14] 马艳芹, 钱晨晨, 孙丹平, 等. 施氮水平对稻田土壤温室气体排放的影响. 农业工程学报, 2016, 32(S2):128-134.
[15] Stocker T F, Qin D, Plattner G K, et al. Contribution of working group Ⅰ to the fifth assessment report of the intergovernmental panel on climate change.//Climate Change 2013:The Physical Science Basis. UK: Cambridge University Press, 2014, 78(6):1022-1025.
[16] 葛会敏, 陈璐, 于一帆, 等. 稻田甲烷排放与减排的研究进展. 中国农学通报, 2015, 31(3):160-166.
[17] Lamine S M. 耕作方式与秸秆还田对双季稻产量和温室气体排放的影响. 北京:中国农业科学院, 2018.
[18] 姚秀娟. 翻耕与旋耕作业对水稻生产的影响. 现代化农业, 2007, 8(7):27-28.
[19] 李新举, 张志国, 李贻学. 土壤深度对还田秸秆腐解速度的影响. 土壤学报, 2001, 38(1):135-138.
[20] Jensen E S. Mineralization-immobilization of nitrogen in soil amended with low C:N ratio plant residues with different particle sizes. Soil Biology and Biochemistry, 1994, 26(4):519-521.
doi: 10.1016/0038-0717(94)90185-6
[21] Reinoud S. Methane production and methane consumption:a review of processes underlying wetland methane fluxes. Biogeochemistry, 1998, 41(1):23-51.
doi: 10.1023/A:1005929032764
[22] Jean L M, Pierrearmand R. Production,oxidation,emission and consumption of methane by soils:a review. European Journal of Soil Biology, 2001, 37(1):25-50.
doi: 10.1016/S1164-5563(01)01067-6
[23] 伍芬琳, 张海林, 李琳, 等. 保护性耕作下双季稻农田甲烷排放特征及温室效应. 中国农业科学, 2008, 41(9):2703-2709.
[24] Zhang J, Hang X, Lamine S M, et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agriculture, Ecosystems and Environment, 2017, 250:37-43.
doi: 10.1016/j.agee.2017.07.034
[25] Liao P, Huang S, Van Gestel N, et al. Liming and straw retention interact to increase nitrogen uptake and grain yield in a double rice-cropping system. Field Crops Research, 2018, 216:217-224.
doi: 10.1016/j.fcr.2017.11.026
[26] 吴建富, 曾研华, 赵新帆, 等. 耕作方式对双季机插水稻产量和土壤理化性质的影响. 湖南农业大学学报(自然科学版), 2017, 43(6):581-585.
[27] 薛建福, 濮超, 张冉, 等. 农作措施对中国稻田氧化亚氮排放影响的研究进展. 农业工程学报, 2015, 31(11):1-9.
[28] Gregorich E G, Rochette P, St-Georges P C, et al. Tillage effects on N2O emission from soils under corn and soybeans in Eastern Canada. Canadian Journal of Soil Science, 2008, 88:153-161.
doi: 10.4141/CJSS06041
[29] Hou P F, Li G H, Wang S H, et al. Methane emissions from rice fields under continuous straw return in the middle-lower reaches of the Yangtze River. Journal of Environmental Sciences, 2013, 25(9):1874-1881.
doi: 10.1016/S1001-0742(12)60273-3
[30] Chen H H, Li X C, Hu F, et al. Soil nitrous oxide emissions following crop residue addition:a meta-analysis. Global Change Biology, 2013, 19(10):2956-2964.
doi: 10.1111/gcb.2013.19.issue-10
[31] 夏仕明, 陈洁, 蒋玉兰, 等. 稻田N2O排放影响因素与减排研究进展. 中国稻米, 2017, 23(2):5-9.
[32] Bouwman A F. Nitrogen oxides and tropical agriculture. Nature, 1998, 392(6679):866-867.
doi: 10.1038/31809
[33] 杨通, 吴俊男, 鲍婷, 等. 耕作方式对双季稻田土壤剖面CH4和N2O分布特征的影响. 中国水稻科学, 2020, 12(4):1-14.
[34] Yang X X, Shang Q Y, Wu P P, et al. Methane emissions from double rice agriculture under long-term fertilizing systems in Hunan,China. Agriculture, Ecosystems and Environment, 2010, 137(3):308-316.
doi: 10.1016/j.agee.2010.03.001
[35] Schutz H, Seiler W, Conrad R. Influence of soil temperature on methane emission from rice paddy fields. Biogeochemistry, 1990, 11(2):77-95.
[36] Watanabe A, Yoshida M, Kimura M. Contribution of rice straw carbon to CH4 emission from rice paddies using 13C-enriched rice straw. Journal of Geophys Research, 1998, 103(D7):8237-8242.
[37] 汤宏. 秸秆还田下稻田温室气体排放及水分管理的响应. 长沙:湖南农业大学, 2013.
[38] 冯夕, 江长胜, 彭小乐, 等. 轮作方式对冬水田温室气体排放的影响. 环境科学, 2019, 40(1):392-400.
[39] 汤军, 黄山, 谭雪明, 等. 不同耕作方式对机插双季水稻产量的影响. 江西农业大学学报, 2014, 36(5):996-1001.
[40] 刘金花, 秦江涛, 张斌, 等. 赣东北双季水稻轻型种植和耕作模式评价. 土壤, 2012, 44(3):482-491.
[41] 唐海明, 肖小平, 李超, 等. 不同土壤耕作模式对双季水稻生理特性与产量的影响. 作物学报, 2019, 45(5):740-754.
doi: 10.3724/SP.J.1006.2019.82030
[42] 代贵金, 于广星, 刘宪平, 等. 水田旋耕对水稻生长及产量的影响研究. 粮食科技与经济, 2019, 44(7):92-94,98.
[43] 彭成林, 袁家富, 赵书军, 等. 不同耕作深度与施肥量对江汉平原稻田土壤紧实度和水稻产量的影响. 湖北农业科学, 2019, 58(6):30-33.
[44] 钱银飞, 刘白银, 彭春瑞, 等. 不同耕作方式对南方红壤区双季稻周年产量及土壤性状的影响. 2014年全国青年作物栽培与生理学术研讨会论文集. 中国作物学会, 2014: 2.
[1] Su Wenping, Wang Huan, Aimulaguli·Kuerban , Zhao Xinlin, Xue Lihua, Zhang Jianxin, Liu Jun, Sun Shiren. Comparison of Growth Characteristics and Yields of Different Wheat Varieties Planted in the Approaching Winter in Northern Xinjiang [J]. Crops, 2021, 37(6): 108-114.
[2] Yang Na, Xi Jilong, Wang Ke, Xi Tianyuan, Zhang Jiancheng, Yao Jingzhen, Wang Jian. Effects of Spring Irrigation on Yield and Water Utilization of Late-Sowing Winter Wheat in Southern Shanxi [J]. Crops, 2021, 37(6): 115-121.
[3] Zhou Qiancong, Chen Le, Luo Kang, Liu Mengjie, Song Yongping, Xie Xiaobing, Zeng Yongjun. Effects of Nitrogen Panicle Fertilizer Management on Yield and Quality of Hybrid Late Japonica Rice [J]. Crops, 2021, 37(6): 129-133.
[4] Gao Jia, Wang Jiao, Wang Song, Liu Hongjian, Kang Jia, Shen Hong, Wang Haili, Ren Shaoyong. Effects of Biochar-Based Fertilizer on Soil Urease Activity and Yield of Potato [J]. Crops, 2021, 37(6): 134-138.
[5] Li Xinhao, Li Jun, Wan Lin, Liu Lixin, Liu Junquan, Ma Ni. Effects of No-Tillage and Drilling on Growth, Root System and Yield of Rapeseed (Brassica napus L.) in Hilly Area [J]. Crops, 2021, 37(6): 139-144.
[6] Wang Qi, Li Meijuan, Zhang Jia’en, Tang Jiaxin, Zeng Wenjing, Zhou Lei, Yang Qingxin, Jiang Mingmin, Wu Jiayuan, Luo Mingzhu. Effects of Rice-Fish Co-Culture on Chlorophyll Fluorescence Characteristics and Yield in Rice [J]. Crops, 2021, 37(6): 145-151.
[7] Guo Mingming, Wang Kangjun, Zhang Guangxu, Sun Zhongwei, Li Jun, Zhang Yueshu, Dai Dandan, Chen Feng, Fan Jiwei. Regulation of Sowing Date and Row Spacing on Grain Yield and Quality of Wheat [J]. Crops, 2021, 37(6): 152-158.
[8] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[9] Li Yang, Yang Xiaolong, Wang Benfu, Zhang Zhisheng, Chen Shaoyu, Li Jinlan, Cheng Jianping. Effects of Main Season Stubble Height on Ratoon Season Yield and Rice Quality [J]. Crops, 2021, 37(6): 164-170.
[10] Wang Xin, Wang Cai. Effects of Different Sowing Dates and Seeding Rates on the Growth Characteristics and Yield of Winter Wheat [J]. Crops, 2021, 37(6): 182-188.
[11] Cai Lijun, Zhang Jingtao, Liu Jingqi, Gai Zhijia, Guo Zhenhua, Zhao Guifan. Effects of Long-Term No-Tillage Straw Returning on Soil Organic Carbon and Soybean Yield in Cold Region [J]. Crops, 2021, 37(6): 189-192.
[12] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[13] Li Xin, Jin Guanghui, Wang Pengcheng, Wang Ziwen. Analysis of Stability of Potato Varieties (Strains) Starch and Yield Performance [J]. Crops, 2021, 37(6): 51-57.
[14] Gao Tiantian, Wang Demei, Wang Yanjie, Yang Yushuang, Chang Xuhong, Zhao Guangcai. Response of Different Spring Wheat Varieties to Nitrogen Treatment [J]. Crops, 2021, 37(6): 67-71.
[15] Chen Zhongcheng, Jin Xijun, Li He, Zhou Weixin, Qiang Binbin, Liu Jia, Zhang Yuxian. Effects of Exogenous Melatonin on Growth, Photosynthetic Fluorescence Characteristics and Yield Components of Adzuki Bean [J]. Crops, 2021, 37(6): 88-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!