Crops ›› 2022, Vol. 38 ›› Issue (3): 149-154.doi: 10.16035/j.issn.1001-7283.2022.03.021

Previous Articles     Next Articles

Physiological Responses of Three Tartary Buckwheat Varieties to Salt Stress and Evaluation of Salt Tolerance

Shi Xian1(), Li Hongyou2, Lu Bingyue1, Zhou Yun1, Zhao Jiju1, Zhao Mengli1, Liang Jing1, Meng Hengling1()   

  1. 1College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China
    2Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550000, Guizhou, China
  • Received:2021-03-16 Revised:2021-08-11 Online:2022-06-15 Published:2022-06-20
  • Contact: Meng Hengling E-mail:sx_biology2@126.com;menghengl@163.com

Abstract:

In order to study the physiological responses of different tartary buckwheat varieties to salt stress and evaluation of salt tolerance, in the pot experiment, seedlings of Pheasant tartary buckwheat, Ningku 2 and Hunan tartary buckwheat 7-2 were treated with 0, 50, 100, 150mmol/L NaCl solutions, morphological index, seedling growth index and other physiological and biochemical indexes were determined to analyze the mechanisms of salt tolerance in tartary buckwheat, the salt tolerance of different tartary buckwheat varieties was evaluated by membership function analysis. Results showed that the leaves of three tartary buckwheat varieties showed symptoms of water loss shrinkage, yellowing and decay under salt stress condition and the damage of high concentration was the most obvious. With the increase of NaCl concentration, the wet weight, dry weight, plant height, stem diameter and root length of three varieties showed a decreasing trend. The contents of chlorophyll and MDA, SOD activity increased first and then decreased with the highest at 100mmol/L, POD activity and relative conductivity showed an increasing trend with the highest at 150mmol/L, and root vitality showed a decreasing trend with the lowest at 150mmol/L. The salt tolerance of Ningku 2 > Hunan tartary buckwheat 7-2 > Pheasant tartary buckwheat was determined through a membership function analysis and detailed examination.

Key words: Tartary buckwheat, Seedling, Salt stress, Morphological index, Growth index, Physiological and biochemical indexes

Fig.1

Effects of salt stress on leaf morphology of tartary buckwheat"

Table 1

Effects of salt stress on fresh and dry weight of tartary buckwheat g"

处理
Treatment
野鸡苦荞Pheasant tartary buckwheat 宁苦2号Ningku 2 湖南苦荞7-2 Hunan tartary buckwheat 7-2
鲜重Fresh weight 干重Dry weight 鲜重Fresh weight 干重Dry weight 鲜重Fresh weight 干重Dry weight
CK 3.12±0.55a 0.282±0.043a 1.80±0.47a 0.155±0.045a 2.64±0.27a 0.186±0.033a
Y1 2.26±0.45b 0.220±0.054b 1.70±0.34a 0.149±0.041a 1.49±0.31b 0.135±0.039b
Y2 2.20±0.43b 0.193±0.051c 1.52±0.44b 0.125±0.039b 1.40±0.27bc 0.109±0.017bc
Y3 1.48±0.18c 0.124±0.020d 1.24±0.45c 0.099±0.016c 1.22±0.19c 0.101±0.026c

Table 2

Effects of salt stress on plant height, stem diameter and root length of tartary buckwheat"

处理
Treatment
宁苦2号
Ningku 2
野鸡苦荞
Pheasant tartary buckwheat
湖南苦荞7-2
Hunan tartary buckwheat 7-2
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
根长
Root length
(cm)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
根长
Root length
(cm)
株高
Plant height
(cm)
茎粗
Stem diameter
(mm)
根长
Root length
(cm)
CK 11.38±1.92a 3.43±0.44a 13.08±2.45a 17.95±1.54a 3.51±0.25a 14.44±1.22a 11.30±0.60a 3.00±0.07a 10.34±0.74a
Y1 11.13±1.18a 3.28±0.20b 9.81±1.00b 13.64±1.06b 3.31±0.10b 12.05±0.41b 9.88±0.61b 2.88±0.11b 9.28±0.70b
Y2 10.44±0.59b 3.27±0.21b 9.83±1.34b 12.30±0.75c 3.24±0.08c 11.35±0.53bc 9.15±0.43c 2.83±0.06b 9.09±0.66b
Y3 9.66±0.66c 2.99±0.33c 9.46±1.36b 11.10±0.64d 3.10±0.08d 11.08±0.63c 8.86±0.31c 2.38±0.17c 7.90±0.41c

Fig.2

Effects of salt stress on physiology and biochemistry of tartary buckwheat seedlings Different small letters indicate significant difference between treatments (P < 0.05), the same below"

Table 3

Membership function values and comprehensive evaluation values of each variety"

品种
Variety
隶属函数值Membership function value 综合评价值
Comprehensive
evaluation
value
鲜重
Fresh
weight
干重
Dry
weight
株高
Plant
height
茎粗
Stem
diameter
根长
Root
length
叶绿素含量
Chlorophyll
content
MDA
含量
MDA
content
POD
活性
POD
activity
SOD
活性
SOD
activity
根系
活力
Root
activity
相对电导率
Relative
conductivity
野鸡苦荞
Pheasant tartary buckwheat
0.4787 0.5111 0.3864 0.4703 0.3429 0.5323 0.4807 0.4885 0.4104 0.4809 0.4674 0.4591
宁苦2号Ningku 2 0.5804 0.5893 0.5766 0.5776 0.2991 0.5645 0.4771 0.5253 0.5435 0.3581 0.4311 0.5021
湖南苦荞7-2
Hunan tartary buckwheat 7-2
0.3292 0.3735 0.3827 0.6342 0.5128 0.5911 0.4977 0.5665 0.4644 0.5150 0.4342 0.4819
[1] Wu X X, He J, Chen J L, et al. Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma, 2014, 251:169-176.
doi: 10.1007/s00709-013-0535-6
[2] 常汝镇, 陈一舞, 邵桂花, 等. 盐对大豆农艺性状及籽粒品质的影响. 大豆科学, 1994, 13(2):101-105.
[3] 侯倩倩, 韩致文, 王国华. 中国西北干旱区土壤盐渍化问题研究进展. 中国农学通报, 2011, 27(29):246-250.
[4] 刘凤岐, 刘杰淋, 朱瑞芬, 等. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价. 草业学报, 2015, 24(1):183-189.
[5] 万思卿. 茶树对NaCl胁迫的生理响应及基因差异表达分析. 杨凌:西北农林科技大学, 2018.
[6] 柯玉琴, 潘廷国, 艾育芳. 盐胁迫对发芽水稻种子质膜透性及物质转化的影响. 中国生态农业学报, 2002, 10(4):10-13.
[7] 刘雪华, 张艳萍, 张英昊, 等. 盐胁迫下五个苦荞麦品种的耐盐性比较. 湖北农业科学, 2015, 54(17):4128-4130.
[8] 路之娟, 张永清, 张楚, 等. 不同基因型苦荞苗期抗旱性综合评价及指标筛选. 中国农业科学, 2017, 50(17):3311-3322.
[9] 雷云龙. 苦荞抗逆相关NAC转录因子基因的克隆及其表达分析. 雅安:四川农业大学, 2017.
[10] 林汝法. 发挥苦荞种植优势做大做强苦荞产业. 作物杂志, 2008(5):1-4.
[11] 俞灵莺, 李向荣. 植物黄酮类抗糖尿病及其并发症的研究进展. 国外医学卫生学分册, 2000, 27(6):331-335.
[12] 李合生. 植物生理生化实验原理与技术. 北京: 高等教育出版社, 2000.
[13] 刘昊华, 虞毅, 丁国栋, 等. 4种滨海造林树种耐盐性评价. 东北林业大学学报, 2011, 39(7):8-11,34.
[14] 杨发荣, 刘文瑜, 黄杰, 等. 不同藜麦品种对盐胁迫的生理响应及耐盐性评价. 草业学报, 2017, 26(12):77-88.
[15] 韩润燕, 陈彦云, 周志红, 等. NaCl胁迫对草木樨种子萌发及幼苗生长的影响. 干旱地区农业研究, 2014, 32(5):78-83.
[16] 黄勇, 郭猛, 张红瑞, 等. 盐胁迫对石竹种子萌发和幼苗生长的影响. 草业学报, 2020, 29(12):105-111.
[17] 顾恒, 李玲, 欧阳绮霞, 等. 盐胁迫对3个桂花品种生长和生理特性的影响. 中国野生植物资源, 2020, 39(10):28-34.
[18] 刘燕, 杨伟, 马晖玲, 等. 盐胁迫对6种草地早熟禾幼苗生理特性的影响. 甘肃农业大学学报, 2019, 5(54):140-150.
[19] 谷娇娇, 胡博文, 贾琰, 等. 盐胁迫对水稻根系相关性状及产量的影响. 作物杂志, 2019(4):176-182.
[20] Grundmann O, Nakajima J, Seo S, et al. Anti-anxiety effects of Apocynum venetum L. in the elevated plus maze test. Journal of Ethnopharmacology, 2007, 110(3):406-411.
pmid: 17101250
[21] 周琦, 祝遵凌, 施曼. 盐胁迫对鹅耳枥生长及生理生化特性的影响. 南京林业大学学报(自然科学版), 2015, 39(6):56-60.
[22] 宰学明, 邵志广, 钦佩. 盐胁迫对缤梅幼苗生长和渗透调节物质含量的影响. 北方园艺, 2012(19):12-14.
[23] 郝汉, 曹磊, 陈伟楠, 等. 盐胁迫对槲树(Quercus dentata)幼苗离子平衡及其生理生化特性的影响. 生态学报, 2020, 40(19):6897-6904.
[24] 乌凤章. 三个越橘品种对盐胁迫的生长和生理响应及耐盐性差异. 植物生理学报, 2019, 55(11):1638-1646.
[25] Ansari F A, Ahmad I. Fluorescent Pseudomonas-FAP2 and Bacillus licheniformis interact positively in biofilm mode enhancing plant growth and photosynthetic attributes. Scientific Reports, 2019, 9:45-47.
doi: 10.1038/s41598-018-37161-x
[26] 夏阳, 孙明高, 李国雷, 等. 盐胁迫对四种园林绿化树种叶片中叶绿素含量动态变化的影响. 山东农业大学学报(自然科学版), 2005, 36(1):30-34.
[27] 杨洪兵, 李发良. 盐胁迫下川荞3号和川荞4号生理特性的比较. 吉林农业科学, 2014, 39(3):14-17.
[28] 陆启环, 李发良, 张弢, 等. NaCl胁迫对19个苦荞品种生理特性及FtNHX1表达的影响. 植物生理学报, 2017, 53(8):1409-1418.
[29] 刘海波, 魏玉清, 周维松, 等. NaCl胁迫对萌发期甜高粱和春小麦生理生化特性的影响. 江苏农业科学, 2016, 44(8):106-111.
[30] 陈宝悦, 曹玲, 王艳芳, 等. NaCl胁迫对芹菜生长、生理生化特性及品质的影响. 华北农学报, 2014, 12(29):218-222.
[31] 彭宇, 张春兰, 沈其荣, 等. 盐胁迫下两种外源酚酸对黄瓜种子萌发及幼苗体内某些酶活性的效应. 南京农业大学学报, 2003, 26(1):33-36.
[32] 李瑞静, 石凤翎, 谷蕊, 等. 羊茅属3份种质材料种子萌发期的耐盐性比较. 草原与草业, 2018, 30(3):21-25.
[33] 牛远, 杨修艳, 戴存凤, 等. 大豆芽期和苗期耐盐性评价指标筛选. 大豆科学, 2018, 37(2):215-223.
[34] 王彩芬, 安永平, 马静. 宁夏水稻主栽品种耐盐性评价. 宁夏农林科技, 2019, 60(1):6-8.
[1] Wang Hanxiang, Li Guangcun, Xu Jianfei, Wang Wanxing, Jin Liping. Advances in Research on Salt Tolerance Mechanism of Plants [J]. Crops, 2022, 38(5): 1-12.
[2] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[3] Wang Yan, Li Tingyou, Wang Dou, Li Jiawei, Peng Wenlu, Rui Haiyun. Effects of Isosteviol on Growth of Wheat Seedlings under Salt Stress [J]. Crops, 2022, 38(5): 141-145.
[4] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[5] Du Fu, Xia Maolin, Liu Xinyuan, Yu Zhaojin, Zhang Zhan, Liu Yunfei, Ji Xiaoming. Effective Effects of Acrylamide/Carboxymethyl Cellulose/Biochar Composite Hydrogel on Cadmium Stress in Tobacco Seedlings [J]. Crops, 2022, 38(4): 138-145.
[6] Xu Shiying, Wang Ning, Cheng Hao, Feng Wanjun. Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress [J]. Crops, 2022, 38(4): 90-98.
[7] Wei Xiaokai, Jing Yanqiu, He Jixian, Gu Huizhan, Lei Qiang, Yu Shikang, Zhang Qili, Li Junju. Alleviating Effect of Exogenous Spermidine on Flue-Cured Tobacco Seedlings under Drought Stress [J]. Crops, 2022, 38(3): 143-148.
[8] Pan Feifei, Tang Jiao, Sun Zhuang, Chen Bihua, Wang Guangyin, Wu Dafu, Wang Wei. Effects of Biogas Slurry Instead of Chemical Fertilizer on Winter Wheat Yield [J]. Crops, 2022, 38(3): 174-180.
[9] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[10] Wu Pengbo, Li Lijun, Zhang Yanli. Comprehensive Evaluation of Saline-Alkali Tolerance and Comparison of Rhizosphere Soil Organic Acid Content at Rapeseed Seedling Stage [J]. Crops, 2022, 38(1): 110-115.
[11] Cai Qiqi, Wang Gang, Dong Yinzhuang, Yu Lihua, Wang Yuguang, Geng Gui. Effects of Different Neutral Salt Stress on Photosynthesis and Antioxidant Enzyme System of Sugar Beet Seedlings [J]. Crops, 2022, 38(1): 130-136.
[12] Yin Guifang, Duan Ying, Yang Xiaolin, Cai Suyun, Wang Yanqing, Lu Wenjie, Sun Daowang, He Runli, Wang Lihua. Cloning and Bioinformatics Analysis of FtC4H Gene from Tartary Buckwheat [J]. Crops, 2022, 38(1): 77-83.
[13] Wang Chuliang, Song Wenfeng, Guan Luohao, Xie Jin, Huang Hao, Li Wangyang, Wang Wei. Effects of Film Mulching Method and Transplanting Seedling Age on Yield and Quality of Flue-Cured Tobacco in Honghe [J]. Crops, 2021, 37(6): 95-100.
[14] Shi Nan, Gao Zhiqiang, Hu Haiyan, Chen Chongyi, Wen Shuangya. The Effects of Ordered Machine Thickening and Reducing Fertilizer on Yield and Partial Fertilizer Productivity of Hybrid Rice [J]. Crops, 2021, 37(5): 128-133.
[15] Lü Wei, Ren Guoxiang, Han Junmei, Wen Fei, Wang Ruopeng, Liu Wenping. Effects of Drought Stress on Physiological and Biochemical Indexes of Sesame Seedlings [J]. Crops, 2021, 37(5): 172-175.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!