Crops ›› 2022, Vol. 38 ›› Issue (3): 155-160.doi: 10.16035/j.issn.1001-7283.2022.03.022

Previous Articles     Next Articles

Effects of Density and Row Spacing on Canopy Structure and Photosynthetic Characteristics in Sunflower

Ling Yibo1(), Feng Yunge2, Wang Binjie3, Zhang Kai4, Chen Nianlai5()   

  1. 1Rural Energy Workstation of Xinjiang Uygur Autonomous Region, Urumchi 830049, Xinjiang, China
    2Academic Affairs Office of Hebei University of Geosciences, Shijiangzhuang 050031, Hebei, China
    3Gansu Forestry Research Institute, Lanzhou 730020, Gansu, China
    4College of Life and Geographic Sciences, Kashi University, Kashi 844006, Xinjiang, China
    5College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, Gansu, China
  • Received:2021-03-29 Revised:2021-07-02 Online:2022-06-15 Published:2022-06-20
  • Contact: Chen Nianlai E-mail:371640662@qq.com;chennl@gsau.edu.cn

Abstract:

The experiment was designed using three densities and the variety LD5009 found in the middle reaches of Shiyanghe oasis. The effects of sunflower density and row spacing on canopy structure and photosynthetic properties at full flowering stage and yield were investigated at 39 990 plants/ha (D1), 49 990 plants/ha (D2), 66 660 plants/ha (D3) and three row spacings of 70cm (R1), 60cm (R2), 50cm (R3). The results showed that as planting density grew, the stem diameter of 66 660 plants/ha at 60cm row spacing reduced to 2.50m, and plant height and leaf orientation value of the lower canopy increased to 187.00cm and 50.5 respectively. The leaf area index (LAI) in the middle of the canopy was significantly increased with the increased of the density, while the light environment in the middle and bottom of canopy was optimized on the middle density, and the LAI in the bottom of canopy could be maintained at a high level. LAI could reach 5.20 under D2R2, among which the bottom canopy was 1.97. The chlorophyll content, net photosynthetic rate (Pn) and transpiration rate (Tr) of D3R2 were reduced to 1.09mg/g, -1.87μmol/(m2·s) and 1.33mmol/(m2·s), and it decreased with the increase of density. Yield, seeds number per disk and 1000-seed weight was negative correlated with plant height, the leaf orientation value and LAI in the bottom of canopy, while positively correlated with stem diameter, Pn, Tr, light transmittance in middle and lower canpony and chlorophyll content in the bottom of canopy. The configurations of 49 990 plants/ha and row spacing of 60cm was suitable for canopy structure and photosynthetic characteristic, and could obtain high yield.

Key words: Sunflower, Density, Row spacing, Canopy structure, Photosynthetic characteristics, Yield

Table 1

Effects of density and row spacing on plant height, stem diameter and LOV of sunflower at flowering stage"

处理
Treatment
株高
Plant height
(cm)
茎粗
Stem diameter
(cm)
LOV

Above

Middle

Bottom
D1R1 174c 3.16a 46.40a 43.90de 39.00ef
D1R2 169c 3.18a 44.50a 38.60f 36.80f
D1R3 171c 3.17a 41.60a 41.60ef 39.40ef
D2R1 177bc 2.87abc 48.20a 48.10c 45.00bc
D2R2 174c 2.99ab 46.40a 47.10cd 41.50de
D2R3 179abc 2.77abc 44.00a 51.20ab 46.80bc
D3R1 186ab 2.51c 45.70a 51.30ab 48.10ab
D3R2 187a 2.50c 48.00a 53.70a 50.50a
D3R3 183ab 2.62bc 44.70a 46.50cd 44.10cd

Table 2

Effects of density and row spacing on transmission coefficients and LAI of sunflower at flowering stage"

处理
Treatment
透光率Transmission coefficient (%) LAI
上Above 中Middle 下Bottom 上Above 中Middle 下Bottom 合计Total
D1R1 84.14a 26.61a 8.36a 0.83a 2.03d 1.44d 4.28e
D1R2 85.23a 24.68ab 9.12a 0.84a 2.28bcd 1.63c 4.75cd
D1R3 84.91a 26.48a 9.66a 0.81a 2.16cd 1.42d 4.39de
D2R1 84.47a 21.20b 6.38b 0.83a 2.33bc 1.95a 5.11ab
D2R2 83.70a 20.72b 6.89b 0.89a 2.34bc 1.97a 5.20ab
D2R3 83.39a 22.80ab 5.84b 0.86a 2.30bcd 1.92ab 5.08bc
D3R1 82.97a 11.26d 3.77c 0.88a 2.56ab 1.87ab 5.31ab
D3R2 80.48a 11.67cd 3.93c 0.87a 2.53ab 1.76bc 5.16ab
D3R3 81.87a 15.62c 4.03c 0.91a 2.66a 1.90ab 5.47a

Table 3

Effects of density and row spacing on chloroghyll content and photosynthetic function of sunflower at flowering stage"

处理
Treatment
叶绿素含量Chlorophyll content (mg/g) Pn [μmol/(m2·s)] Tr [mmol/(m2·s)]
上Above 中Middle 下Bottom 上Above 中Middle 下Bottom 上Above 中Middle 下Bottom
D1R1 2.38a 2.67a 2.18ab 15.89ab 7.62a 3.43a 7.93a 4.44a 3.14a
D1R2 2.46a 2.83a 2.42a 16.89a 8.07a 4.12a 8.13a 5.00a 3.25a
D1R3 2.45a 2.66a 2.24a 16.75a 7.99a 3.32a 7.62ab 4.91a 2.87ab
D2R1 2.37a 2.61a 1.74c 14.98abc 4.81bc 0.83b 6.33c 2.59bc 2.18cd
D2R2 2.45a 2.66a 1.84bc 15.47abc 5.39b 1.58b 7.16b 3.00b 2.45bc
D2R3 2.28a 2.60a 1.71c 14.35bc 4.52c 0.58b 5.86cd 2.35c 2.00cde
D3R1 2.31a 2.54a 1.27d 11.60d 1.64e -1.01c 5.47d 2.22c 1.60ef
D3R2 2.20a 2.58a 1.09d 11.22d 1.43e -1.87c 5.33d 2.03c 1.33f
D3R3 2.34a 2.63a 1.66c 13.75c 2.94d 0.44b 6.21c 2.98b 1.79def

Fig.1

Effects of density and row spacing on yield of sunflower Lowercase letters indicate significant difference at P < 5%"

Table 4

Correlation coefficients among canopy structure, photosynthetic characteristics and yield components"

指标
Index
位置
Position
产量
Yield
盘粒数
Seed number per disk
秕子率
Rate of aborted seeds
千粒重
1000-seed weight
株高Plant height -0.61** -0.58** 0.67** -0.76**
茎粗Stem diameter 0.54** 0.74** -0.67** 0.77**
LOV 上部 0.05 -0.11 0.04 -0.12
中部 -0.41* -0.52* 0.46* -0.70**
下部 -0.56* -0.60** 0.65** -0.80**
LAI 上部 -0.21 -0.28 0.17 -0.28
中部 -0.49* -0.61** 0.57** -0.69**
下部 -0.69** -0.40* 0.28 -0.49**
透光率Transmission coefficient 上部 0.29 0.45* -0.25 0.35*
中部 0.60** 0.89** -0.66** 0.82**
下部 0.53** 0.76** -0.62** 0.85**
叶绿素含量Chlorophyll content 上部 0.29 0.23 -0.26 0.26
中部 0.08 0.10 -0.10 0.18
下部 0.59** 0.68** -0.70** 0.83**
Pn 上部 0.60** 0.70** -0.71** 0.79**
中部 0.65** 0.82** -0.79** 0.94**
下部 0.58** 0.72** -0.73** 0.86**
Tr 上部 0.47* 0.68** -0.73** 0.83**
中部 0.40* 0.58** -0.62** 0.77**
下部 0.55** 0.72** -0.66** 0.85**
[1] Donald C M. Competition among crop and pasture plants. Advances in Agronomy, 1963, 15:111-118.
[2] 赵松岭, 李凤民, 张大勇, 等. 作物生产是一个种群过程. 生态学报, 1997, 17(1):100-104.
[3] 张佳华, 姚凤梅. 影响植被内部辐射状况的冠层结构特征研究. 气象科学, 2000, 20(1):15-22.
[4] Widdicombe W D, Thelen K D. Row width and plant density effects on corn grain production in the northern corn belt. Agronomy Journal, 2002, 94:1020-1023.
doi: 10.2134/agronj2002.1020
[5] 徐宗贵, 孙磊, 王浩, 等. 种植密度对旱地不同株型春玉米品种光合特性与产量的影响. 中国农业科学, 2017, 50(13):2463-2475.
[6] 孔令英, 赵俊晔, 于振文, 等. 宽幅播种条件下种植密度对小麦群体结构和光能利用率的影响. 麦类作物学报, 2020, 40(7):850-856.
[7] 袁政祥, 蔡立群, 徐峰. 甘肃向日葵栽培中存在的技术问题及改进措施. 甘肃农业科技, 2011(6):64-65.
[8] 胡树平. 向日葵产量形成及农艺调控机理. 呼和浩特:内蒙古农业大学, 2011.
[9] 崔良基, 王德兴, 宋殿秀, 等. 不同向日葵品种群体光合生理参数及产量的比较. 中国油料作物学报, 2011, 33(2):147-151.
[10] 谭万能, 李秧秧. 不同氮素形态对向日葵生长和光合功能的影响. 西北植物学报, 2005, 25(6):1191-1194.
[11] 云文丽, 侯琼, 王海梅, 等. 不同土壤水分对向日葵光合光响应的影响. 应用气象学报, 2014, 25(4):476-482.
[12] 胡树平, 孟天, 赵卉, 等. 深松对向日葵光合性能及产量的影响. 作物杂志, 2019(1):116-120.
[13] 徐惠风, 马岩松, 徐克章, 等. 向日葵叶片在空间分布特性的初步研究. 吉林农业大学学报, 2001, 23(3):15-18.
[14] 张玉芹, 杨恒山, 高聚林, 等. 超高产春玉米冠层结构及其生理特性. 中国农业科学, 2011, 44(21):4367-4376.
[15] 陈建忠. 向日葵叶面积调整系数. 中国油料, 1984, 4(1):71-73.
[16] Arnon D I. Copper enzymes in isolated chloropasts. Polyphenooxidase in Beta vulgaris. Plant Physiology, 1949, 24:1-15.
doi: 10.1104/pp.24.1.1 pmid: 16654194
[17] 董振国. 农田作物层环境生态. 北京: 中国农业科技出版社, 1994.
[18] 李明, 李文雄. 肥料和密度对寒地高产玉米源库性状及产量的调节作用. 中国农业科学, 2004, 37(8):1130-1137.
[19] 金容, 李钟, 杨云, 等. 密度和株行距配置对川中丘区夏玉米群体光分布及雌雄穗分化的影响. 作物学报, 2020, 46(4):614-630.
doi: 10.3724/SP.J.1006.2020.93034
[20] 吴建民, 梁和, 陆国盈, 等. 密度和肥料对高油玉米生理性状的影响. 西南农业学报, 2005, 18(4):392-396.
[21] 李小鹏, 王术, 黄元财, 等. 株行距配置对齐穗期粳稻冠层结构及产量的影响. 应用生态学报, 2015, 26(11):3329-3336.
[22] 曹彩云, 李伟, 党红凯, 等. 不同种植密度对夏玉米产量、产量性状及群体光合特性的影响研究. 华北农学报, 2013, 28(12):161-166.
[23] 马文涛, 武胜利. 不同林龄胡杨净光合速率对生态因子和生理因子的响应. 云南大学学报(自然科学版), 2020, 42(5):1004-1013.
[24] 于文颖, 纪瑞鹏, 冯锐, 等. 不同生育期玉米叶片光合特性及水分利用效率对水分胁迫的响应. 生态学报, 2015, 35(9):2902-2909.
[25] 张晓艳, 杜吉到, 郑殿峰. 密度对大豆群体冠层结构及光合特性的影响. 干旱地区农业研究, 2011, 29(4):75-80.
[1] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[2] Feng Changhui, Jiao Chunhai, Zhang Youchang, Bie Shu, Qin Hongde, Wang Qiongshan, Zhang Jiaohai, Wang Xiaogang, Xia Songbo, Lan Jiayang, Chen Quanqiu. Genetic Analysis for Yield and Fiber Quality Traits in Upland Cotton Based on Partial NCII Mating Design [J]. Crops, 2022, 38(5): 13-21.
[3] Sun Yunchao, Peng Keyan, Feng Shengye, Ji Chuanyun, Lü peng, Ju Zhengchun. Effects of Row Spacing and Seedling Belt Width on Dry Matter Accumulation and Distribution of Wheat in Wide Refined Sowing [J]. Crops, 2022, 38(5): 130-134.
[4] Jia Xiuping, Mao Xuhui, Liang Gensheng, Liu Runping, Liu Feng, Wang Xingzhen. Analysis of Physiological and Biochemical Mechanism and Growth and Development Characteristics of Saline and Alkali Resistance in Sunflower [J]. Crops, 2022, 38(5): 146-152.
[5] Chang Haigang, Li Guang, Yuan Jianyu, Xie Mingjun, Qi Xiaoping. Effects of Different Fertilization Methods on Soil Nutrients and Yield of Spring Wheat in the Loess Hilly Region of Central Gansu Province [J]. Crops, 2022, 38(5): 160-166.
[6] Zhang Xi, Xie Jin, Huang Hao, Gao Renji, Lu Chao, Zhou Yilin, Liang Zengfa, Wang Wei. Effects of Nitrogen Fertilizer Operation and Plant Spacing on Yield and Quality of Yunyan 116 in Pu’er Tobacco Area [J]. Crops, 2022, 38(5): 188-194.
[7] Shi Bixian, Tao Jianfei, Gao Yan, Xie Huihong, Abulimiti·Aierken , Cheng Pingshan, Maitituersun·Sadike , Sha Hong. Effects of Different Planting Densities on the Morphological Traits and Yields of Three Confectionery Sunflower Varieties [J]. Crops, 2022, 38(5): 195-200.
[8] Xu Min, Jin Lulu, Li Ruichun, Sun Liyuan, Wang Zisheng. Study on Cotton Chemical Topping in Liaohe Cotton Area [J]. Crops, 2022, 38(5): 201-207.
[9] Tao Yueyue, Sun Hua, Wang Haihou, Lu Changying, Shen Mingxing. Effects of Harvest Date and Drying Days on the Yield, Crude Protein Content and Moisture of Forage Rapeseed [J]. Crops, 2022, 38(5): 215-220.
[10] Zhang Chonghua, Duan Licheng, Wang Shangming, Zhang Qingxia, Wang Chengzi, Wu Fengyu, Yang Lin. Effects of Sowing Date on Late-Rice Yield and Utilization of Heat-Light Resources in Jiangxi Province [J]. Crops, 2022, 38(5): 229-234.
[11] Pan Junfeng, Liu Yanzhuo, Liang Kaiming, Huang Nongrong, Peng Bilin, Fu Youqiang, Hu Xiangyu, Zhong Xuhua, Li Meijuan, Hu Rui. Effects of Long- and Short-Term Reduction of Phosphorus Input on Yield and Phosphorus Utilization of Double Cropping Rice in South China [J]. Crops, 2022, 38(5): 241-248.
[12] Li Rui, Dong Liqiang, Shang Wenqi, Yu Guangxing, Dai Guijin, Wang Zheng, Li Yuedong. Effects of Water Spraying Interval at Seedling Stage on Growth and Yield of Rice [J]. Crops, 2022, 38(5): 249-254.
[13] Dong Yang. Study on the Physiological Response of Broomcorn Millet to Different Herbicides [J]. Crops, 2022, 38(5): 255-260.
[14] Chen Shiyong, Wang Rui, Chen Zhiqing, Zhang Haipeng, Wang Juanjuan, Shan Yuhua, Yang Yanju. Effects of Nano-Zinc and Ion-Zinc on Rice Yield Formation and Grain Zinc Content [J]. Crops, 2022, 38(4): 107-114.
[15] Tang Jianpeng, Chen Jingdu, Wen Kai, Zhang Mingwei, Xie Chenglin, Lu Peiling, Min Sigui, Wang Qiluan, Cheng Jiemin. Study on Material Production and Yield Characteristics of Japonica Rice with Good Eating Quality in Rice-Crayfish Farming System [J]. Crops, 2022, 38(4): 115-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!