Crops ›› 2022, Vol. 38 ›› Issue (4): 90-98.doi: 10.16035/j.issn.1001-7283.2022.04.013

Previous Articles     Next Articles

Dynamic Changes of Seedling Traits among Maize Hybrids and Their Parents in Response to Low Nitrogen Stress

Xu Shiying(), Wang Ning, Cheng Hao, Feng Wanjun()   

  1. College of Agriculture, Shanxi Agricultural University/Ministerial and Provincial Co-Innovation Center for Endemic Crops Production with High-Quality and Efficiency in Loess Plateau, Jinzhong 030801, Shanxi, China
  • Received:2021-09-05 Revised:2022-03-01 Online:2022-08-15 Published:2022-08-22
  • Contact: Feng Wanjun E-mail:605824435@qq.com;fengwj123-123@163.com

Abstract:

Maize hybrid Xianyu 335 and its parental inbred lines (PH6WC, PH4CV), and Yuyu 22 and its parental inbred lines (Zong 3, 87-1) were selected as experimental materials. Two nitrogen level treatments were carried out by hydroponics, including low nitrogen (0.04mmol/L, LN) and normal nitrogen (2mmol/L, CK) levels. After three, seven and fourteen days of culture, the biomass accumulation, leaf and root phenotype, leaf chlorophyll content and nitrogen content were analyzed in order to explore the dynamic changes of seedling traits among maize hybrids and their parents under low nitrogen stress. The results showed that the response of root to low nitrogen was earlier than that of shoot, and the response of hybrids to low nitrogen was faster than those of their parents. Under CK and LN treatments, most traits of hybrid seedlings showed heterosis. The heterosis of the root tip number and nitrogen accumulation in roots of Yuyu 22, and total root length, root surface area and root tip number of Xianyu 335 were significantly increased at three time points compared with control. Based on the low nitrogen tolerance index analysis, it was found that the low nitrogen tolerance of the hybrid was between or close to one of the two parents.

Key words: Maize, Seedling traits, Heterosis, Low nitrogen stress

Fig.1

Dynamic morphology changes on leaves (a) and roots (b) of seedlings among maize hybrids and their parents under two nitrogen levels"

Table 1

The variance analysis of the seedling traits among maize hybrids and their parental lines at different days after two nitrogen treatments"

性状
Trait
FF-value
FT FN FG FT×FN FT×FG FN×FG FT×FN×FG
第1叶叶面积
Leaf area of the first leaf (LA1, cm2)
44.42** 58.85** 156.51** 33.06** 28.35** 18.18** 8.74**
第2叶叶面积
Leaf area of the second leaf (LA2, cm2)
14.62** 67.99** 253.24** 29.21** 17.34** 10.71** 8.29**
第1叶SPAD值
SPAD value of the first leaf (SPAD1)
2038.76** 3138.03** 154.21** 1514.78** 7.93** 19.70** 12.63**
第2叶SPAD值
SPAD value of the second leaf (SPAD2)
478.90** 1723.28** 119.60** 831.86** 38.53** 36.32** 19.48**
总根长Total root length (TRL, cm) 743.42** 10.90** 421.19** 16.28** 45.17** 12.05** 2.14*
根表面积Root surface area (RSA, cm²) 503.00** 2.36ns 291.96** 14.88** 35.22** 5.15** 2.26*
根平均直径
Root average diameter (RAD, mm)
73.38** 7.13** 60.68** 1.42ns 9.29** 6.79** 0.79ns
根体积Root volume (RV, cm³) 293.09** 1.49ns 167.41** 13.08** 29.25** 8.38** 5.41**
根尖数Root tips number (RTN) 369.20** 135.73** 249.27** 75.93** 38.73** 26.49** 9.29**
地上部干重Shoot dry weight (SDW, g) 1494.48** 400.32** 474.73** 280.02** 90.10** 45.84** 37.92**
根干重Root dry weight (RDW, g) 1005.89** 67.86** 579.53** 14.15** 84.29** 11.90** 7.74**
根冠比Root to shoot ratio (R/S) 74.08** 488.04** 45.00** 153.19** 7.89** 8.46** 10.55**
地上部氮积累量
Shoot nitrogen accumulation (SNA, mg)
3635.57** 3082.75** 652.51** 1621.36** 268.58** 219.10* 144.24**
根系氮积累量
Root nitrogen accumulation (RNA, mg)
699.37** 1216.75** 1120.20** 426.29** 169.36** 96.93** 92.88**
单株氮积累量
Total nitrogen accumulation per plant (TNA, mg)
4184.98** 3673.90** 866.98** 1889.13** 308.23** 248.11** 171.91**
地上部氮积累量占比SNA/TNA (%) 918.69** 89.92** 22.03** 70.82** 124.33** 228.96** 38.91**
根系氮积累量占比RNA/TNA (%) 918.69** 89.92** 22.03** 70.82** 124.33** 228.96** 38.91**

Fig.2

Cluster of the mid-parent (a) and better-parent (b) heterosis of all traits of maize seedlings at different days after two nitrogen level treatments"

Table 2

Low nitrogen tolerance indexes of seedling among maize hybrid and their parents at different days after cultivation"

处理时间
Treatment
time (d)
基因型
Genotype
指标Index
LA1 LA2 SPAD1 SPAD2 TRL RSA RAD RV RTN SDW RDW R/S SNA RNA TNA SNA/TNA RNA/TNA AVG SD CV(%)
3 PH6WC 1.10 0.93 1.00 1.00 0.73 0.88 1.16 1.06 0.68 0.87 1.13 1.21 0.44 1.24 0.56 0.78 2.21 1.00 0.39 38.7
XY335 1.05 0.98 0.96 0.93 0.86 1.01 1.12 1.05 0.83 0.94 1.18 1.32 0.77 0.97 0.79 0.97 1.22 1.00 0.15 15.1
PH4CV 1.05 1.08 0.89 0.86 0.89 0.89 1.02 0.89 0.75 0.99 1.02 1.00 1.12 0.90 1.08 1.04 0.83 0.96 0.10 10.8
Z3 0.83 0.86 0.93 0.89 1.02 1.05 0.92 1.02 0.59 0.79 0.93 0.80 0.91 0.48 0.76 1.19 0.63 0.86 0.18 20.6
YY22 1.04 0.97 1.01 1.01 1.04 0.77 0.91 0.52 1.37 0.99 1.05 1.07 1.17 1.27 1.20 0.98 1.06 1.03 0.19 18.5
87-1 0.98 0.94 1.01 1.01 1.41 1.21 1.00 1.65 1.13 1.12 0.83 0.74 1.10 0.73 1.01 1.10 0.72 1.04 0.24 22.9
AVG 1.01 0.96 0.97 0.95 0.99 0.97 1.02 1.03 0.89 0.95 1.02 1.02 0.92 0.93 0.90 1.01 1.11 0.98 0.06 6.0
SD 0.09 0.07 0.05 0.07 0.23 0.16 0.10 0.36 0.30 0.11 0.13 0.23 0.28 0.30 0.24 0.14 0.58
CV(%) 9.30 7.50 5.20 7.00 23.60 16.00 10.00 35.40 33.50 12.00 12.70 22.20 30.30 32.40 26.40 13.90 52.00
7 PH6WC 0.94 0.96 0.77 0.79 0.69 0.80 1.16 0.88 0.64 0.66 0.84 1.66 0.36 0.64 0.39 0.92 1.64 0.87 0.35 40.9
XY335 1.02 0.98 0.66 0.77 1.05 1.25 1.22 1.90 0.78 0.87 1.25 1.56 0.39 0.88 0.44 0.89 2.01 1.05 0.45 42.5
PH4CV 0.98 0.99 0.71 0.74 1.11 1.12 1.06 1.19 0.70 0.82 1.54 1.78 0.52 1.07 0.57 0.90 1.87 1.04 0.39 37.3
Z3 0.91 0.91 0.82 0.95 1.44 1.47 1.02 1.40 0.67 0.84 1.02 1.06 0.82 0.22 0.62 1.32 0.36 0.93 0.35 37.8
YY22 0.86 0.88 0.72 0.79 1.07 0.99 0.97 0.98 1.23 1.08 1.18 1.09 0.67 0.67 0.67 1.00 1.01 0.93 0.18 19.2
87-1 0.86 1.07 0.98 0.92 1.97 1.60 0.99 1.68 1.42 1.05 1.32 2.10 0.90 0.81 0.89 1.02 0.92 1.21 0.41 33.6
AVG 0.93 0.97 0.78 0.83 1.22 1.21 1.07 1.34 0.91 0.89 1.19 1.54 0.61 0.72 0.60 1.01 1.30 1.01 0.27 26.3
SD 0.06 0.07 0.12 0.09 0.44 0.30 0.10 0.40 0.33 0.16 0.24 0.40 0.22 0.29 0.18 0.16 0.64
CV(%) 7.00 6.90 14.90 10.40 35.80 24.80 9.30 29.80 36.70 17.50 20.30 26.20 36.70 40.30 30.00 16.30 49.50
14 PH6WC 0.56 0.29 0.00 0.00 0.58 0.70 1.20 0.88 0.32 0.47 1.01 2.58 0.23 0.58 0.26 0.89 2.28 0.75 0.72 94.9
XY335 1.21 0.23 0.00 0.00 1.00 1.00 1.02 1.05 0.53 0.40 1.07 2.57 0.17 0.61 0.21 0.83 2.98 0.88 0.82 94.0
PH4CV 1.15 1.02 0.00 0.00 0.94 1.13 1.13 1.37 0.79 0.57 1.17 2.41 0.27 0.88 0.32 0.85 2.77 0.99 0.73 74.3
Z3 0.44 0.72 0.00 0.46 0.74 0.64 0.98 0.65 0.48 0.46 0.82 2.08 0.31 0.24 0.31 1.01 0.78 0.65 0.45 69.5
YY22 0.52 0.89 0.00 0.34 0.97 0.90 0.98 0.99 0.96 0.60 1.29 2.06 0.27 0.32 0.27 0.99 1.17 0.80 0.49 62.1
87-1 0.65 1.04 0.00 0.43 0.89 0.83 0.96 0.82 0.52 0.97 1.65 1.70 0.59 0.43 0.58 1.02 0.75 0.81 0.42 51.5
AVG 0.75 0.70 0.00 0.21 0.85 0.87 1.05 0.96 0.60 0.58 1.17 2.23 0.31 0.51 0.32 0.93 1.79 0.81 0.55 68.1
SD 0.34 0.36 0.00 0.23 0.16 0.18 0.10 0.24 0.23 0.21 0.28 0.35 0.15 0.23 0.13 0.09 1.01
CV 44.7 50.9 0.00 111.10 19.00 21.2 9.3 25.5 38.7 35.7 24.3 15.6 47.8 45.3 40.3 9.1 56.5
总体
Total
AVG 0.90 0.87 0.58 0.66 1.02 1.01 1.05 1.11 0.80 0.80 1.13 1.60 0.61 0.72 0.61 0.98 1.40
SD 0.22 0.24 0.44 0.36 0.32 0.26 0.10 0.36 0.31 0.23 0.23 0.60 0.33 0.31 0.30 0.13 0.78
CV(%) 24.70 27.20 75.00 54.80 31.70 25.20 9.10 32.70 39.00 28.10 20.20 37.40 54.30 43.50 49.20 13.30 55.60

Table 3

Correlative analysis of low nitrogen tolerance indexes of the different traits"

指标Index LA1 LA2 SPAD1 SPAD2 TRL RSA RAD RV RTN SDW RDW R/S SNA RNA TNA SNA/TNA RNA/TNA
LA1
LA2 0.30
SPAD1 0.30 0.26
SPAD2 0.20 0.21 0.96**
TRL 0.02 0.18 0.32 0.35
RSA 0.26 0.31 0.24 0.22 0.77**
RAD 0.40 0.09 -0.15 -0.20 -0.35 0.13
RV 0.36 0.24 0.22 0.19 0.60** 0.92** 0.40
RTN 0.25 0.43* 0.54* 0.48* 0.57* 0.44* -0.21 0.36
SDW 0.10 0.53* 0.70** 0.70** 0.48* 0.29 -0.30 0.18 0.67**
RDW 0.07 0.49* -0.19 -0.22 0.28 0.32 -0.02 0.27 0.34 0.23
R/S -0.12 -0.12 -0.72** -0.79** -0.30 -0.17 0.30 -0.06 -0.29 -0.64** 0.29
SNA 0.07 0.43* 0.81** 0.82** 0.47* 0.25 -0.48* 0.05 0.49* 0.81** -0.08 -0.81**
RNA 0.70** 0.52* 0.53* 0.39 0.04 0.09 0.27 0.19 0.51* 0.42 0.26 -0.18 0.32
TNA 0.16 0.52* 0.82** 0.81** 0.45* 0.26 -0.42 0.08 0.58** 0.86** 0.01 -0.75** 0.98** 0.43*
SNA/TNA -0.49* 0.11 0.31 0.42 0.43* 0.21 -0.63** -0.05 0.12 0.45* -0.23 -0.58** 0.68** -0.43* 0.60**
RNA/TNA 0.50* -0.08 -0.35 -0.50 -0.38 -0.13 0.66** 0.10 -0.07 -0.46* 0.24 0.64** -0.69** 0.42 -0.60** -0.97**
[1] George H S. The composition of a field of maize. Journal of Heredity, 1908, 4(1):296-301.
[2] Birchler J A, Auger D L, Riddle N C. In search of the molecular basis of heterosis. Plant Cell, 2003, 15(10):2236-2239.
pmid: 14523245
[3] Hochholdinger F, Hoecker N. Towards the molecular basis of heterosis. Trends in Plant Science, 2007, 12(9):427-432.
pmid: 17720610
[4] Suresh K S, Renu K. Physiological,biochemical,and genetic basis of heterosis. Advances in Agronomy, 1975, 27:123-174.
[5] Tollenaar M A, Ahmadzadeh E A. Physiological basis of heterosis for grain yield in maize. Crop Science, 2004, 44(6):2086-2094.
doi: 10.2135/cropsci2004.2086
[6] Tollenaar M A, Lee E A. Dissection of physiological processes underlying grain yield in maize by examining genetic improvement and heterosis. Maydica, 2006, 51(2):399-408.
[7] Wang F H. Embryological development of inbred and hybrid Zea mays L.. American Journal of Botany, 1947, 34(3):113-125.
doi: 10.1002/j.1537-2197.1947.tb12966.x
[8] Meyer S, Pospisil H, Scholten S. Heterosis associated gene expression in maize embryos 6 days after fertilization exhibits additive,dominant and overdominant pattern. Plant Molecular Biology, 2007, 63(3):381-391.
doi: 10.1007/s11103-006-9095-x
[9] Hoecker N, Keller B, Piepho H P, et al. Manifestation of heterosis during early maize (Zea mays L.) root development. Theoretical and Applied Genetics, 2006, 112(3):421-429.
pmid: 16362278
[10] Hoecker N, Keller B, Muthreich N, et al. Comparison of maize (Zea mays L.) F1-hybrid and parental inbred line primary root transcriptomes suggests organ-specific patterns of nonadditive gene expression and conserved expression trends. Genetics, 2008, 179(3):1275-1283.
doi: 10.1534/genetics.108.088278 pmid: 18562640
[11] Paschold A, Marcon C, Hoecker N, et al. Molecular dissection of heterosis manifestation during early maize root development. Theoretical and Applied Genetics, 2010, 120(2):383-388.
doi: 10.1007/s00122-009-1082-6 pmid: 19526205
[12] Springer N M, Stupar R M. Allelic variation and heterosis in maize:how do two halves make more than a whole?. Genome Research, 2007, 17(3):264-275.
[13] Araus J L, Sanchez C, Cabrera-Bosquet L. Is heterosis in maize mediated through better water use?. New Phytologist, 2010, 187(2):392-406.
doi: 10.1111/j.1469-8137.2010.03276.x pmid: 20456048
[14] Liu W D, Tollenaar M. Response of yield heterosis to increasing plant density in maize. Crop Science, 2009, 49(5):1807-1816.
doi: 10.2135/cropsci2008.07.0422
[15] 李潮海, 尹飞, 王群. 不同耐旱性玉米杂交种及其亲本叶片活性氧代谢对水分胁迫的响应. 生态学报, 2006(6):1912-1919.
[16] 唐连顺, 李广敏. 干旱对玉米杂交种及其亲本自交系幼苗膜脂过氧化及其保护酶活性的影响. 作物学报, 1995(4):509-512.
[17] 马建华, 孙毅, 王玉国, 等. 低磷胁迫对玉米自交系及其杂交种苗期生理特性的影响. 山西农业科学, 2014, 42(3):220-222.
[18] 陈范骏, 米国华, 春亮, 等. 玉米氮效率的杂种优势分析. 作物学报, 2004(10):1014-1018.
[19] Wang Z, Ma B L, Yu X, et al. Physiological basis of heterosis for nitrogen use efficiency of maize. Scientific Reports, 2019, 9(1):18708.
doi: 10.1038/s41598-019-54864-x
[20] Duvick D N. Genetic progress in yield of United States maize (Zea mays L.). Maydica, 2005, 50(3):193-202.
[21] Han M, Okamoto M, Beatty P H, et al. The genetics of nitrogen use efficiency in crop plants. Annual Review of Genetics, 2015, 49:269-289.
doi: 10.1146/annurev-genet-112414-055037
[22] Good A G, Beatty P H. Fertilizing nature:A tragedy of excess in the commons. Working Papers, 2011, 9(8):e1001124.
[23] Mulvaney R L, Khan S A, Ellsworth T R. Synthetic nitrogen fertilizers deplete soil nitrogen:a global dilemma for sustainable cereal production. Journal of Environmental Quality, 2009, 38(6):2295-2314.
doi: 10.2134/jeq2008.0527 pmid: 19875786
[24] Li H, Hu B, Chu C. Nitrogen use efficiency in crops:lessons from Arabidopsis and rice. Journal of Experimental Botany, 2017, 68(10):2477-2488.
doi: 10.1093/jxb/erx101
[25] 赵泽群, 师赵康, 王雯, 等. 低氮胁迫下玉米幼苗氮素和蔗糖分配特性. 植物营养与肥料学报, 2020, 26(4):783-796.
[26] 冯万军, 张义荣, 姚颖垠, 等. 玉米杂交种与亲本苗期根系蛋白差异表达谱分析. 自然科学进展, 2009, 19(6):619-627.
[27] 薛玲珠, 孙敏, 高志强, 等. 深松蓄水增量播种对旱地小麦植株氮素吸收利用、产量及蛋白质含量的影响. 中国农业科学, 2017, 50(13):2451-2462.
[28] 胡成梅, 连盈, 程鹏飞, 等. 小麦苗期性状与耐低氮性的遗传相关分析. 中国农业大学学报, 2020, 25(4):11-22.
[29] Li H, Sun Y, Yu X, et al. Effects of exogenous calcium on the growth and physiological traits of garlic seedlings under cadmium stress. Journal of Animal and Plant Sciences, 2015, 25(3):107-113.
[30] Procházková D, Sairam R K, Lekshmy S, et al. Differential response of maize hybrid and its parental lines to salinity stress. Czech Journal of Genetics and Plant Breeding, 2013, 54:9-15.
doi: 10.17221/30/2017-CJGPB
[31] Betrán F J, Beck D, Bänziger M, et al. Secondary traits in parental inbreds and hybrids under stress and non-stress environments in tropical maize. Field Crops Research, 2003, 83(1):51-65.
doi: 10.1016/S0378-4290(03)00061-3
[32] Sabermanesh K, Holtham L R, George J, et al. Transition from a maternal to external nitrogen source in maize seedlings. Journal of Integrative Plant Biology, 2017, 59(4):261-274.
doi: 10.1111/jipb.12525
[33] Li P, Zhuang Z, Cai H, et al. Use of genotype-environment interactions to elucidate the pattern of maize root plasticity to nitrogen deficiency. Journal of Integrative Plant Biology, 2016, 58(3):242-253.
doi: 10.1111/jipb.12384
[34] Chun L, Mi G, Li J, et al. Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant and Soil, 2005, 276(1-2):369-382.
doi: 10.1007/s11104-005-5876-2
[35] Liu J, Li J, Chen F, et al. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). 2008, 305(1):253-265.
[36] Zhan A, Lynch J P. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. Journal of Experimental Botany, 2015, 66(7):2055-2065.
doi: 10.1093/jxb/erv007 pmid: 25680794
[1] Wang Yuanyuan, Gu Zihan, Chen Pingping, Yi Zhenxie. Study on Feasibility of Seasonal Substituted Planting of Maize to Rice in Cd Contaminated Paddy Field [J]. Crops, 2022, 38(4): 187-192.
[2] Wang Jiabao, Ji Huaiyuan, Mei Jiafa, Tao Zhiguo, Shu Zhifeng, Jiang Sanqiao. The Breeding of New Maize Variety Quankeyu 900 and Its Cultivation, Seed Production Techniques [J]. Crops, 2022, 38(4): 267-270.
[3] Lei Lei, Guan Zheyun, Cao Shiliang, Wang Yumin, Lin Chunjing, Peng Bao, Liu Peng, Zhao Limei, Li Zhigang, Zhang Chunbao. Classification of Soybean Heterotic Groups Based on SSR Molecular Markers for Yield-Related Traits [J]. Crops, 2022, 38(4): 54-61.
[4] Yang Aojun, Chang Qiaoling, Wang Peng, Wang Fang, Gao Yanting, Zhou Guangkuo, Song Xiaojia, Wei Encheng. Effects of Exogenous 5-Aminolevulinic Acid on Seed Germination and Seedling Growth of Maize under Drought Stress [J]. Crops, 2022, 38(3): 194-199.
[5] Zhang Jun, Chen Shunquan, Zhang Wenqing, Li Gaochao, Bell. Adaptability of Ten Maize Varieties in Cameroon [J]. Crops, 2022, 38(3): 87-91.
[6] Cao Liru, Lu Xiaomin, Wang Guorui, Dang Zun, Qiu Tian, Qiu Jianjun, Tian Yunfeng, Wang Zhenhua, Dang Yongfu. Effects of Foliar Spraying with Carbon-Adsorbed Polyglutamic Acid on Growth and Development of Maize [J]. Crops, 2022, 38(2): 158-166.
[7] Li Zhongnan, Wang Yueren, Che Limei, Wu Shenghui, Qu Haitao, Song Tao, Li Fulin, Li Guangfa. Comparative Analysis and Research of Four Ear Traits of Six Generations and DH Generation of Tongyu 179 [J]. Crops, 2022, 38(2): 64-68.
[8] Fang Mengying, Yan Peng, Lu Lin, Wang Qingyan, Dong Zhiqiang. Effects of Ethylene-Chlormequat-Potassium on Nitrogen Metabolism and Yield of Summer Maize under Different Nitrogen Levels [J]. Crops, 2022, 38(2): 96-103.
[9] Liu Zigang, Lu Haibo, Wu Minhua, Zhao Haichao, Wei Dong, Huang Zhihong. Effects of Chemical Regulator of Yuhuangjin on Lodging Resistance and Yield of Spring Maize [J]. Crops, 2022, 38(1): 142-146.
[10] Duan Liuying, Wu Ting, Li Xia, Xie Jiankun, Hu Biaolin. Progress on Cytoplasmic Male Sterility and Fertility Restoration Genes in Rice [J]. Crops, 2022, 38(1): 20-30.
[11] Duan Yajuan, Cao Shiliang, Yu Tao, Li Wenyue, Yang Gengbin, Wang Chengbo, Liu Baomin, Liu Changhua. Identification of Salt Tolerance during Germination of Maize Inbred Lines [J]. Crops, 2022, 38(1): 213-219.
[12] Zhou Delong, Meng Lingcong, Zheng Shubo, Wang Nan, Li Mu, Wang Xinqi, Lu Shi, Wang Min, Liu Wenguo, Lu Ming. Establishing of a Fast and Efficient Testing Method of Transgenic Maize [J]. Crops, 2022, 38(1): 65-69.
[13] Li An, Shu Jianhong, Liu Xiaoxia, Meng Zhengbing, Wang Xiaoli, Zhao Degang. Effects of Bacillus subtilis on Drought Resistance and Physiological Indexes of Maize Seeds under Drought Stress [J]. Crops, 2021, 37(6): 217-223.
[14] Zhang Yanru, Yang Zihe, Yang Rong, Han Jian, Jiao Jinlong, Zhao Li, Wu Yuanqi. Evaluation of the Adaptability of Tropical Maize Germplasm Population to Control Parental Mixed Selections [J]. Crops, 2021, 37(5): 14-19.
[15] Cao Liru, Wang Guorui, Zhang Xin, Wei Liangming, Wei Xin, Zhang Qianjin, Deng Yazhou, Wang Zhenhua, Lu Xiaomin. Genome-Wide Identification and Analysis of HSP90 Gene Family in Maize [J]. Crops, 2021, 37(5): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!