Crops ›› 2022, Vol. 38 ›› Issue (6): 201-207.doi: 10.16035/j.issn.1001-7283.2022.06.029

Previous Articles     Next Articles

Effects of Biochar Dosage on Accumulation and Transport of Dry Matter and Nitrogen and Yield of Spring Wheat in Irrigated Area

Hui Chao(), Yang Weijun(), Deng Tianchi, Chen Yuxin, Song Shilong, Zhang Jinshan, Shi Shubing   

  1. School of Agronomy, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
  • Received:2021-07-18 Revised:2022-09-27 Online:2022-12-15 Published:2022-12-21
  • Contact: Yang Weijun E-mail:hczll1997@163.com;1984_ywj@163.com

Abstract:

The effects of single application of different amounts of biochar and nitrogen reduction combined application of biochar on dry matter and nitrogen accumulation and translocation and yield of spring wheat in irrigated area were studied to provide scientific basis for fertilizer reduction and agricultural utilization of biochar. Four levels of biochar (0, 10, 20, 30t/ha) and two levels of nitrogen fertilizer (0, 150kg/ha) were set. Through a two-year field experiment, the dry matter, nitrogen accumulation, distribution and transportation and spring wheat yield were analyzed in 2020. The results showed that, compared with nitrogen reduction alone, application of different amounts of biochar or nitrogen reduction combined with biochar significantly increased the yield of spring wheat (P < 0.05), the increase range was 6.4%-20.2%, in which nitrogen reduction combined with medium amount of biochar (N 150kg/ha, biochar 20t/ha) had the best effect. Compared with the control, dry matter accumulation and transport amounts were increased by 18.8% and 85.0%, respectively, and transport efficiency was also significantly improved. Nitrogen transport amount and transport efficiency were increased by 52.8% and 19.8%, respectively. The effects of biochar application on dry matter and nitrogen accumulation and transport of spring wheat were significant, and were beneficial to increase the yield of spring wheat. Under the conditions of this experiment, biochar (20t/ha) combined with nitrogen (150kg/ha) had the highest yield.

Key words: Spring wheat, Biochar, Dry matter, Distribution, Accumulation, Yield

Table 1

Amount of biochar and nitrogen fertilizer of each treatment in the field experiment"

处理
Treatment
生物炭
Biochar (t/hm2)
氮肥
Nitrogen fertilizer (kg/hm2)
B0N0 (CK) 0 0
B1N0 30 0
B2N0 20 0
B3N0 10 0
B0N1 0 150
B1N1 30 150
B2N1 20 150
B3N1 10 150

Table 2

Dry matter accumulation of spring wheat under different treatments in each growth period g/plant"

处理
Treatment
拔节期
Jointing
stage
孕穗期
Booting
stage
开花期
Flowering
stage
灌浆期
Filling
stage
成熟期
Maturity
B0N0 (CK) 0.13cd 0.30e 1.73c 2.47c 3.34f
B1N0 0.16cd 0.36cde 1.98b 2.67abc 3.62de
B2N0 0.17bc 0.40bc 2.29a 3.23a 3.82bc
B3N0 0.13d 0.33de 2.17ab 2.63bc 3.54e
B0N1 0.16bcd 0.38bcd 2.23a 2.83abc 3.76cd
B1N1 0.20ab 0.44ab 2.16ab 3.04abc 3.99ab
B2N1 0.23a 0.47a 2.29a 3.13ab 4.14a
B3N1 0.18bc 0.43ab 2.10ab 2.75abc 3.90bc

Table 3

Dry matter accumulation model of spring wheat under different treatments"

处理Treatment 拟合方程Fitting equation t0/d t1/d t2/d ?t/d Vmax R2
B0N0(CK) y=3.23/(1+e7.93-0.13t) 51.75 63.73 75.70 23.94 0.10 0.9642
B1N0 y=3.46/(1+e8.04-0.13t) 49.85 61.82 73.79 23.94 0.11 0.9559
B2N0 y=3.57/(1+e13.60-0.23t) 52.47 59.05 65.63 13.17 0.18 0.9790
B3N0 y=3.11/(1+e15.34-0.27t) 50.15 56.14 62.12 11.97 0.16 0.9451
B0N1 y=3.35/(1+e13.26-0.23t) 50.95 59.73 68.51 17.56 0.14 0.9447
B1N1 y=3.83/(1+e8.24-0.13t) 51.73 58.00 64.27 12.54 0.17 0.9638
B2N1 y=3.96/(1+e8.15-0.13t) 50.02 59.43 68.84 18.81 0.18 0.9662
B3N1 y=3.80/(1+e7.02-0.11t) 53.51 59.50 65.49 11.97 0.14 0.9866

Table 4

Dry matter distribution in the mature stage of spring wheat under different treatments"

处理
Treatment
茎鞘Stem and sheath 叶片Leaf 颖壳Chaff 籽粒Grain
质量(g/株)
Mass (g/plant)
比例
Ratio (%)
质量(g/株)
Mass (g/plant)
比例
Ratio (%)
质量(g/株)
Mass (g/plant)
比例
Ratio (%)
质量(g/株)
Mass (g/plant)
比例
Ratio (%)
B0N0(CK) 0.92c 27.66a 0.17c 5.18ab 0.66a 19.65a 1.59d 47.50c
B1N0 1.02abc 28.13a 0.19bc 5.29ab 0.57a 15.80ab 1.84c 50.76abc
B2N0 0.95bc 26.77a 0.19bc 5.27ab 0.56a 15.78b 1.85c 52.18ab
B3N0 1.05abc 27.43a 0.21ab 5.47a 0.66a 17.16ab 1.91c 49.94bc
B0N1 1.00abc 25.74a 0.19ab 4.90b 0.65a 16.63ab 2.06b 52.73ab
B1N1 1.13a 27.18a 0.21a 5.11ab 0.59a 14.17b 2.22a 53.53ab
B2N1 0.98bc 26.12a 0.19abc 5.03ab 0.53a 14.12b 2.06b 54.73a
B3N1 1.07ab 26.69a 0.21ab 5.19ab 0.65a 16.16ab 2.08b 51.95ab
B ns ns ns ns
N ns ns ns ns
B×N ns ns * *

Table 5

Dry matter transport of vegetative organs and contribution to grain of spring wheat"

处理
Treatment
营养器官干重(g/株)
Vegetative organs dry weight (g/plant)
单株粒重(g/株)
Grain weight
(g/plant)
干物质转运量(g/株)
Dry matter transport
amount (g/plant)
干物质转运效率
Dry matter
transport rate (%)
干物质转运贡献率
Dry matter transport
contribution rate (%)
开花期Anthesis 成熟期Maturity
B0N0(CK) 1.78c 1.72ab 1.59d 0.06b 3.46b 3.57b
B1N0 1.98b 1.78ab 1.84c 0.19ab 9.33ab 10.61ab
B2N0 2.17ab 1.69b 1.85c 0.46a 21.02a 24.78a
B3N0 2.29a 1.91a 1.91c 0.34ab 14.76ab 17.80ab
B0N1 2.23a 1.70b 2.06b 0.42a 18.83a 20.23ab
B1N1 2.16ab 1.92a 2.08b 0.26ab 12.03ab 12.26ab
B2N1 2.29a 1.92a 2.22a 0.40a 17.46ab 18.18ab
B3N1 2.10ab 1.84ab 2.06b 0.37ab 16.74ab 17.79ab
B * ns ns ns ns ns
N * ns * ns ns ns
B×N ns ns * ns ns ns

Table 6

Nitrogen accumulation and distribution ratio in spring wheat at mature stage"

处理
Treatment
茎鞘Stem and sheath 叶片Leaf 颖壳Chaff 籽粒Grain
单株积累量
Accumulation
per plant (mg)
比例
Ratio
(%)
单株积累量
Accumulation
per plant (mg)
比例
Ratio
(%)
单株积累量
Accumulation
per plant (mg)
比例
Ratio
(%)
单株积累量
Accumulation
per plant (mg)
比例
Ratio
(%)
B0N0(CK) 17.13c 12.86a 3.92e 2.94b 11.36bc 8.53a 100.72e 75.66ef
B1N0 16.95c 11.53bc 6.10c 4.15a 10.29de 7.00c 113.63d 77.32bc
B2N0 21.50b 12.59a 6.89b 4.04a 13.67a 8.01b 128.60b 75.36e
B3N0 18.19c 12.44ab 6.01c 4.11a 9.35e 6.39d 112.69d 77.05cd
B0N1 17.96c 11.10c 6.17c 3.81a 10.24de 6.33d 127.45b 78.16a
B1N1 20.70b 12.56ab 4.86d 2.95b 10.45cd 6.34d 128.86b 78.76ab
B2N1 26.88a 13.34a 8.13a 4.04a 12.77a 6.34d 153.74a 76.29de
B3N1 20.95b 13.07a 6.59bc 4.11a 11.58b 7.23c 121.06c 75.71ef
B ns ns ns ns
N * ns ns *
B×N * ** ** **

Table 7

Nitrogen accumulation and transport in spring wheat"

处理
Treatment
花前营养器官
氮素积累量
Nitrogen accumulation
pre-anthesis (kg/hm2)
成熟期氮素积累
Nitrogen accumulation at maturity (kg/hm2)
氮素转运
Nitrogen translocation
营养器官
Vegetative part
籽粒
Grain
转运量
Transport amount
(kg/hm2)
转运效率
Transport
efficiency (%)
对籽粒的贡献率
Contribution rate
to grain (%)
B0N0(CK) 77.85f 32.41e 100.72e 45.44f 58.35d 45.14d
B1N0 107.87e 33.34e 113.63d 74.52e 69.09c 65.61c
B2N0 144.59b 42.06b 128.60b 102.53b 70.89ab 79.78a
B3N0 116.56d 33.56e 112.69d 83.00d 71.20bc 73.66b
B0N1 138.00c 34.36de 127.45b 103.64b 75.09a 81.32a
B1N1 132.45c 36.01cd 128.86b 96.44c 72.81ab 74.85b
B2N1 174.39a 47.78a 153.74a 126.61a 72.60b 82.37a
B3N1 137.77c 39.69c 121.06c 98.08c 71.26bc 81.02a
B ns ** ns ns ns ns
N * * * ns ns ns
B×N ** * ** ** ** **

Table 8

Spring wheat yield and its components under different treatments"

处理
Treatment
穗数
Spike
number
穗粒数
Grain number
per spike
千粒重
1000-grain
weight(g)
产量
Yield
(kg/hm2)
B0N0 (CK) 396.4c 34.8c 45.74c 5989.8d
B1N0 438.5ab 37.1ab 48.18abc 7467.6b
B2N0 446.0a 35.8bc 49.43ab 7512.6b
B3N0 410.7bc 35.1c 46.57bc 6400.7cd
B0N1 459.5a 37.8a 47.71abc 7891.1ab
B1N1 425.8abc 38.1a 48.18abc 7462.4b
B2N1 459.6a 38.8a 50.32a 8548.7a
B3N1 432.6ab 37.6ab 46.74abc 7233.2bc
B ns ns * ns
N ns * ns ns
B×N ** ns ns *
[1] 郑恩楠, 杨桦, 陈鹏, 等. 水氮管理模式下水稻碳氮吸收、土壤呼吸与产量效应. 农业机械学报, 2018, 49(6):287-295.
[2] Lehmann J, Gaunt J, Rondon M, et al. Bio-char sequestration in terrestrial ecosystems-a review. Mitigation and Adaption Strategies for Global Change, 2006, 11:403-427.
doi: 10.1007/s11027-005-9006-5
[3] Sohi S P, Krull E, López-Capel E, et al. A review of biochar and its use and function in soil. Advances in Agronomy, 2010, 105:47-82.
[4] Atkinson C J, Fitzgerald J D, Hipps N A, et al. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review. Plant Soil, 2010, 33:1-18.
doi: 10.1007/BF01378191
[5] 王晓强, 许跃奇, 何晓冰, 等. 减氮配施生物炭基肥对豫中烤烟产质量的影响. 贵州农业科学, 2019, 47(2):32-36.
[6] 李传哲, 章欢, 姚文静, 等. 生物炭配施氮肥对典型黄河故道区土壤理化性质和冬小麦产量的影响. 应用生态学报, 2020, 31(10):3424-3432.
doi: 10.13287/j.1001-9332.202010.028
[7] 孟繁昊, 于晓芳, 王志刚, 等. 生物炭配施氮肥对土壤物理性质及春玉米产量的影响. 玉米科学, 2020, 28(1):142-150.
[8] 柳瑞, 高阳, 李恩琳, 等. 减氮配施生物炭对水稻生长发育、干物质积累及产量的影响. 生态环境学报, 2020, 29(5):926-932.
[9] 张爱平, 刘汝亮, 高霁, 等. 生物炭对宁夏引黄灌区水稻产量及氮素利用率的影响. 植物营养与肥料学报, 2015, 21(5):1352-1360.
[10] 史登林, 王小利, 段建军, 等. 氮肥减量配施生物炭对黄壤稻田土壤有机碳活性组分和矿化的影响. 应用生态学报, 2020, 31(12):4117-4124.
doi: 10.13287/j.1001-9332.202012.027
[11] 陈颖, 刘玉学, 陈重军, 等. 生物炭对土壤有机碳矿化的激发效应及其机理研究进展. 应用生态学报, 2018, 29(1):314-320.
doi: 10.13287/j.1001-9332.201801.024
[12] 尚杰, 耿增超, 陈心想, 等. 施用生物炭对旱作农田土壤有机碳、氮及其组分的影响. 农业环境科学学报, 2015, 34(3):509-517.
[13] Lehmann J, Steiner C, Nehls T, et al. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and Soil, 2003, 249:343-357.
doi: 10.1023/A:1022833116184
[14] 高文翠, 杨卫君, 贺佳琪, 等. 生物炭添加对麦田土壤微生物群落代谢的影响. 生态学杂志, 2020, 39(12):3998-4004.
[15] 葛晓改, 周本智, 肖文发, 等. 生物质炭输入对土壤碳排放的激发效应研究进展. 生态环境学报, 2016, 25(2):339-345.
[16] 阚正荣, 马守田, 祁剑英, 等. 施用生物炭对冬小麦光合潜力和籽粒产量的影响. 麦类作物学报, 2019, 39(6):719-727.
[17] 戴皖宁, 王丽学, 王晓帆, 等. 秸秆覆盖和生物炭对玉米田间地温和产量的影响. 生态学杂志, 2019, 38(3):719-725.
[18] 王荣栋, 尹经章. 作物栽培学. 第1版. 北京: 高等教育出版社, 2015:79-84.
[19] 姜丽娜, 张雅雯, 朱娅林, 等. 施氮量对不同品种小麦物质积累、转运及产量的影响. 作物杂志, 2019(5):151-158.
[20] 张娜, 李佳, 刘学欢, 等. 生物炭对夏玉米生长和产量的影响. 农业环境科学学报, 2014, 33(8):1569-1574.
[21] 程效义, 张伟明, 陈温福, 等. 玉米秸秆炭对玉米物质生产及产量形成特性的影响. 玉米科学, 2016, 24(1):117-122,129.
[22] Pathy A, Ray J, Paramasivan, et al. Biochar amendments and its impact on soil biota for sustainable agriculture. Biochar, 2020, 2:287-305.
doi: 10.1007/s42773-020-00063-1
[23] 雷钧杰, 梁玉超, 薛丽华, 等. 施氮量对滴灌冬小麦干物质积累、分配与转运的影响. 麦类作物学报, 2017, 38(8):1078-1086.
[24] 刘慧屿, 娄春荣, 韩英祚, 等. 秸秆生物炭与减量氮肥配施对玉米氮素利用率及土壤结构的影响. 土壤通报, 2020, 51(5):1180-1188.
[25] 魏永霞, 石国新, 冯超, 等. 黑土区坡耕地施加生物炭对土壤结构与大豆产量的影响. 农业机械学报, 2019, 50(8):309-320.
[26] Xie Y X, Dong C, Chen Z Y, et al. Successive biochar amendment affected crop yield by regulating soil nitrogen functional microbes in wheat-maize rotation farmland. Environmental Research, 2021, 194:110671.
doi: 10.1016/j.envres.2020.110671
[27] 徐晓楠, 陈坤, 冯小杰, 等. 生物炭提高花生干物质与养分利用的优势研究. 植物营养与肥料学报, 2018, 24(2):444-453.
[28] 张伟明, 陈温福, 孟军, 等. 东北地区秸秆生物炭利用潜力、产业模式及发展战略研究. 中国农业科学, 2019, 52(14):2406-2424.
[29] 谢志坚, 吴佳, 段金贵, 等. 生物炭基肥与紫云英联合还田对红壤区早稻干物质累积和氮素利用特征的影响. 植物营养与肥料学报, 2020, 26(9):1732-1739.
[30] 王铭浩, 王秀茹, 孙妍. 生物质覆盖对玉米植株氮素吸收和分配的影响. 中国水土保持科学, 2020, 18(2):120-129.
[31] Miana I A, Ahmada B, Khana S. Improving wheat productivity and soil quality through integrate phosphorous management with residual effect of biochar. Journal of Saudi Chemical Society, 2021, 25:101175.
doi: 10.1016/j.jscs.2020.11.008
[32] 王博, 刘扣珠, 任天宝, 等. 减氮条件下生物炭对烤烟根系发育及土壤微生物群落的影响. 中国土壤与肥料, 2021(3):45-50.
[33] 陈富彩, 耿伟, 阮志, 等. 炭基有机物料对陕南烤烟氮钾含量、光合特性、生长及质量的影响. 中国土壤与肥料, 2016(2):114-119.
[34] 王丹丹, 郑纪勇, 颜永毫, 等. 生物炭对宁南山区土壤持水性能影响的定位研究. 水土保持学报, 2013, 27(2):101-104,109.
[35] 张伟明, 孟军, 王嘉宇, 等. 生物炭对水稻根系形态与生理特性及产量的影响. 作物学报, 2013, 39(8):1445-1451.
[36] 刘宇娟, 谢迎新, 董成, 等. 秸秆生物炭对潮土区小麦产量及土壤理化性质的影响. 华北农学报, 2018, 33(3):232-238.
doi: 10.7668/hbnxb.2018.03.034
[37] Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 2010, 333:1-2.
doi: 10.1007/s11104-010-0361-y
[1] Zhou Hao, Qiu Xianjin, Xu Jianlong. Advance in Effects of Magnetized Water Irrigation on Crop Growth and Development [J]. Crops, 2022, 38(6): 1-6.
[2] Wen Rui, Chen Qianwu, Zhao Yajie, Jia Yiming, Lu Xudong, Zhang Jihong, Li Huanchun, Zhao Peiyi, Zhang Yonghu. Study on Water Temperature Effects and Water Use Efficiency of Paddy Field under Different Plastic Film Mulching Planting Patterns in Arid Area of Loess Plateau in Northwest China [J]. Crops, 2022, 38(6): 111-117.
[3] Xiong Yousheng, Xiong Hanfeng, Guo Yanlong, Wang Haisheng, Liu Wei, Yan Yuxiang, Xie Yuanyuan, Zhou Jianxiong, Yang Lijun. Effects of Reducing Fertilizer Application Models on Wheat Yield and Nutrient Use Efficiencies in Rice-Wheat Cropping System [J]. Crops, 2022, 38(6): 118-123.
[4] Yang Yan, Xu Ningsheng, Pan Zhechao, Li Yanshan, Yang Qiongfen, Zhang Lei. Effects of Paclobutrazol and Nitrogen on Yield and Economic Benefit of Potato [J]. Crops, 2022, 38(6): 139-144.
[5] Qin Meng, Cui Shize, He Xiaodong, Zhai Lingxia, Tao Bo, Wang Zhaojun, Zhao Haicheng, Li Hongyu, Zheng Guiping, Liu Lihua. Effects of Straw Puffing Returning on Rice Yield, Quality and Soil Nutrients [J]. Crops, 2022, 38(6): 159-166.
[6] Ma Chunmei, Tian Yangqing, Zhao Qiang, Li Jiangyu, Wu Xueqin. Effects of Plant Growth Regulator Compound on Cotton Yield [J]. Crops, 2022, 38(6): 181-185.
[7] Qiao Jiangfang, Zhang Panpan, Shao Yunhui, Liu Jingbao, Li Chuan, Zhang Meiwei, Huang Lu. Effects of Different Planting Densities and Varieties on Dry Matter Production and Yield Components of Summer Maize [J]. Crops, 2022, 38(6): 186-192.
[8] Zhang Mingfa, Zhang Sheng, Teng Kai, Chen Qianfeng, Tian Minghui, Jiang Zhimin, Chao Jin, Jian Panfeng, Deng Xiaohua. Effects of Fertilizing with Straw Biochar on Soil pH and Root Growth of Flue-Cured Tobacco in Huayuan, Hunan [J]. Crops, 2022, 38(6): 193-200.
[9] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
[10] Feng Yu, Xing Baolong. Research on the Growth Characteristics and Forage Quality of Different Cowpea Varieties in Cold Region [J]. Crops, 2022, 38(6): 220-225.
[11] Chong Haotian, Shang Cheng, Zhang Yunbo, Huang Liying. Effects of Dense Planting with Reduced Nitrogen Application on Spikelet Formation of Different Types of Rice Varieties [J]. Crops, 2022, 38(6): 226-233.
[12] Shi Guanyan, Wang Juanfei, Ma Huifang, Zhao Xiongwei. Correlation and Regression Analysis between Yield and Main Agronomic Traits in Foxtail Millet Hybrids [J]. Crops, 2022, 38(6): 82-87.
[13] Zhao Bin, Ji Changhao, Sun Hao, Zhu Bin, Wang Rui, Chen Xiaodong. Comprehensive Assessment of the Yield and Quality of Forage and Grain among Multi-Rowed Barley Lines [J]. Crops, 2022, 38(6): 93-97.
[14] Xu Chuangye, Zhang Jianjun, Zhou Gang, Zhang Kaipeng, Zhu Xiaohui, Wang Jiaxi, Dang Yi, Zhao Gang, Wang Lei, Li Shangzhong, Fan Tinglu. Screening and Evaluation of New Maize Varieties with Compact Planting, High Yield and Suitable for Mechanical Grain Harvest in Loess Plateau in Eastern Gansu Province [J]. Crops, 2022, 38(5): 104-110.
[15] Li Yanlu, Wang Junpeng, Yu Xinzhi, Wei Honglei, Chen Qiyu, Zhao Hongxiang, Xu Chen, Bian Shaofeng, Zhang Zhian. Effects of Mulching Different Plastic Films on Accumulation and Distribution of Dry Matter and Nitrogen in Maize in Cold and Cool Areas [J]. Crops, 2022, 38(5): 124-129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!