Crops ›› 2023, Vol. 39 ›› Issue (4): 215-223.doi: 10.16035/j.issn.1001-7283.2023.04.031

Previous Articles     Next Articles

Effects of Foliar Spraying Selenium on Selenium Accumulation of Oat Varieties and Evaluation of Their Comprehensive Traits

Li Yue1(), Ning Dan1, Lü Yufeng1, Zhang Bin1, Xue Zhiqiang2, Jia Juqing1, Feng Meichen1, Song Xiaoyan1, Zhang Meijun1(), Yang Wude1   

  1. 1National Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding (in Preparation)/College of Agronomy, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
    2Ecological Agriculture and Animal Husbandry Research Institute, Shanxi Agricultural University, Shuozhou 037200, Shanxi, China
  • Received:2022-03-01 Revised:2022-04-06 Online:2023-08-15 Published:2023-08-15

Abstract:

In order to reveal the effects of spraying selenium on the selenium accumulation in oats, and evaluate and screen excellent comprehensive traits oats varieties based on yield and quality after spraying selenium, 24 oats varieties were used as research materials, three spraying concentrations were set (sodium selenite dosage was 0, 80, 160g/ha) to spray on leaves at heading stage. The results showed that selenium content in oats leaves had the highest increase with increasing spraying selenium concentration at mature stage, with selenium content in grains in turn. The spraying selenium decreased the variation degree of grain selenium content. Under the same selenium concentration, the differences of selenium contents in grains among 24 oats varieties were the greatest, however, and the least in roots. When 80g/ha sodium selenite was sprayed, the highest selenium content in grains was 0.30mg/kg, but when the spraying concentration was 160g/ha, the grain selenium contents of 24 oats varieties all exceeded the limitations for selenium content in foods or edible materials from most of different literatures (0.300mg/kg). The variation levels of grain protein, fat and β-glucan contents were also changed by spraying selenium. When spraying 80g/ha sodium selenite, the yields of oats had no significant difference compared with the treatment of spraying 0g/ha; correlation analysis showed that there was a significant positive correlation between selenium content and contents of fat and β-glucan, with correlation coefficients 0.63 and 0.42, respectively. GYT biplot analysis based on yield and considering grain selenium, protein, fat and β-glucan contents showed that the top five oat varieties were Pinyan 1, Banner, OA1576-4, Baiyan 10 and Pinyan 2 in turn.

Key words: Oat, Foliar spraying selenium, Selenium accumulation, Comprehensive trait evaluation

Table 1

Test oat varieties information"

编号
Code
品种名称
Variety
name
裸(皮)
Naked
(hulled)
编号
Code
品种名称
Variety
name
裸(皮)
Naked
(hulled)
1 白燕1号 13 坝莜1号
2 白燕2号 14 坝莜8号
3 白燕3号 15 坝莜18号
4 白燕4号 16 晋燕8号
5 白燕5号 17 晋燕12号
6 白燕6号 18 晋燕13号
7 白燕7号 19 晋燕17号
8 白燕8号 20 晋燕18号
9 白燕10号 21 燕科1号
10 品燕1号 22 陇燕2号
11 品燕2号 23 Banner
12 品燕5号 24 OA1576-4

Fig.1

Selenium contents in different organs of 24 oats varieties after spraying selenium The different lowercase letters indicate significant difference at 0.05 level"

Table 2

Variation of selenium contents in different organs of 24 oats varieties after spraying selenium"

处理
Treatment
部位
Position
含量范围
Content range (mg/kg)
标准差
SD
变异系数
CV (%)
最低含量的品种编号
Variety code with minimum content
最高含量的品种编号
Variety code with maximum content
Se0 0.32~0.41 0.02 5.39f 1 15
0.15~0.23 0.03 13.52a 20 10
0.15~0.28 0.03 14.63a 11 10
0.23~0.34 0.03 10.10bc 8 18
籽粒 0.07~0.13 0.01 13.69a 1 18
Se1 0.44~0.54 0.03 5.58f 20 10
0.23~0.34 0.03 9.99c 20 2
0.60~0.74 0.04 6.27e 6 23
0.49~0.63 0.04 7.14d 15 2
籽粒 0.20~0.30 0.03 11.55b 16 10
Se2 0.50~0.62 0.04 6.35e 6 2
0.36~0.51 0.04 9.59c 16 2
0.98~1.35 0.08 7.40d 16 8
0.74~0.91 0.06 7.26d 22 8
籽粒 0.30~0.44 0.04 12.10b 16 8

Table 3

Grain selenium contents of 24 oats varieties after spraying selenium mg/kg"

编号
Code
籽粒硒含量Grain selenium content 编号
Code
籽粒硒含量Grain selenium content 编号
Code
籽粒硒含量Grain selenium content
Se0 Se1 Se2 Se0 Se1 Se2 Se0 Se1 Se2
1 0.07c 0.36b 0.34a 9 0.09c 0.29b 0.39a 17 0.10c 0.22b 0.32a
2 0.10c 0.29b 0.42a 10 0.12c 0.30b 0.40a 18 0.13c 0.28b 0.36a
3 0.09c 0.29b 0.42a 11 0.09c 0.26b 0.30a 19 0.08c 0.26b 0.33a
4 0.09c 0.24b 0.30a 12 0.09c 0.29b 0.40a 20 0.11c 0.20b 0.31a
5 0.10c 0.28b 0.35a 13 0.10b 0.28a 0.34a 21 0.08c 0.25b 0.33a
6 0.09c 0.23b 0.31a 14 0.12c 0.23b 0.35a 22 0.11c 0.26b 0.32a
7 0.09c 0.30b 0.40a 15 0.11c 0.24b 0.33a 23 0.09c 0.30b 0.40a
8 0.08c 0.30b 0.44a 16 0.10c 0.20b 0.30a 24 0.10c 0.27b 0.34a

Table 4

Variation of grain quality traits in 24 oats varieties after spraying selenium"

指标
Index
处理
Treatment
含量范围
Content range (%)
标准差
SD
变异系数
CV (%)
最低含量品种编号
Variety code with minimum content
最高含量品种编号
Variety code with maximum content
蛋白质Protein Se0 10.04~16.22 1.86 14.86b 15 11
Se1 10.76~18.66 2.36 16.65a 13 9
Se2 10.37~19.24 2.37 17.24a 16 18
脂肪Fat Se0 3.33~10.67 1.73 23.77a 20 22
Se1 3.46~10.79 1.69 22.85a 21 7
Se2 3.87~10.53 1.74 23.74a 21 1
β-葡聚糖 β-glucan Se0 0.52~2.68 0.58 38.04a 19 24
Se1 1.62~4.56 0.87 27.89b 1 3
Se2 1.49~4.03 0.66 24.80c 4 9

Table 5

Grain yields of 24 oats varieties after spraying selenium kg/hm2"

编号
Code
产量Yield 编号
Code
产量Yield 编号
Code
产量Yield 编号
Code
产量Yield
Se0 Se1 Se2 Se0 Se1 Se2 Se0 Se1 Se2 Se0 Se1 Se2
1 3494.7a 3502.4a 3307.8a 7 3773.8a 3848.7a 3578.6a 13 4211.3a 4298.5a 3747.1a 19 3438.9a 3560.1a 3543.1a
2 3134.5a 3151.5a 3005.6a 8 3653.4a 3733.6a 3364.3a 14 3821.8a 3952.3a 3852.3a 20 2958.1a 3053.6a 3055.5a
3 3172.9a 3214.2a 3180.4a 9 3074.6a 3321.8a 3053.8a 15 4184.9a 4520.0a 4007.4a 21 3183.0a 3259.9a 3414.9a
4 3872.1a 3951.2a 3611.6a 10 3960.0a 4057.6a 3854.6a 16 3280.2a 3478.9a 3284.2a 22 3382.1a 3490.4a 3154.3a
5 3411.0a 3497.8a 3253.3a 11 4062.9a 4109.2a 3032.2b 17 3594.8a 3712.8a 3050.8b 23 3988.2a 4063.7a 3824.6b
6 3975.5a 4052.8a 3911.4a 12 3601.0a 3636.8a 3186.8b 18 3064.9a 3208.2a 3359.6a 24 3926.8a 4144.2a 3607.6b

Fig.2

Thermograms of correlation among grain selenium contents, quality traits and yields of 24 oat varieties (n=72) Y: yield, P: protein, β: β-glucan, Se: selenium, F: fat, the same below"

Fig.3

Yield×quality traits biplot about 24 oat varieties"

Table 6

Comprehensive values of yield×quality traits about 24 oats varieties"

编号
Code
综合性状值
Synthetic trait value
稳定性值
Stability trait value
综合值
Comprehensive value
编号
Code
综合性状值
Synthetic trait value
稳定性值
Stability trait value
综合值
Comprehensive value
1 21 015.1 -208.6 20 849.0 13 25 503.6 -4155.3 23 645.9
2 20 671.3 -1852.0 21 474.6 14 23 433.1 -2898.7 22 117.7
3 22 897.5 29.4 22 911.9 15 24 268.9 844.6 23 957.2
4 21 342.6 -1156.1 21 825.2 16 18 235.9 1626.4 18 672.4
5 24 705.2 1342.1 24 099.1 17 20 924.3 1266.7 21 237.4
6 25 707.7 4581.0 23 582.5 18 20 612.1 -509.3 20 620.8
7 26 251.7 -4473.6 24 135.5 19 20 347.4 -315.2 20 370.4
8 25 598.8 -4275.4 23 677.2 20 15 014.1 739.0 14 685.1
9 26 648.8 899.3 26 325.6 21 17 810.9 5364.4 20 241.7
10 29 472.4 -2573.9 28 668.5 22 20 233.5 -709.8 20 368.1
11 26 698.8 4559.3 24 617.0 23 28 438.6 1936.5 27 985.2
12 20 492.0 8.8 20 535.7 24 27 378.6 -69.7 27 687.2
[1] Obour A K, Holman J D, Schlegel A J. Seeding rate and nitrogen application effects on oat forage yield and nutritive value. Journal of Plant Nutrition, 2019, 42(13):1452-1460.
doi: 10.1080/01904167.2019.1617311
[2] 中华人民共和国地方病与环境图集编纂委员会. 中华人民共和国地方病与环境图集. 北京: 科学出版社,1989.
[3] Schwarz K, Foltz C M. Selenium as an integral part of factor 3 against dietary necrotic liver degeneration. Nutrition, 1999, 15(3):255-259.
pmid: 10408880
[4] Lyons G H, Judson G J, Ortiz-Monasterio I, et al. Selenium in Australia:Selenium status and biofortification of wheat for better health. Journal of Trace Elements in Medicine and Biology, 2005, 19(1):75-82.
doi: 10.1016/j.jtemb.2005.04.005
[5] 张爱民, 李欣, 刘冬成, 等. 品质支撑农作物产业与未来发展. 中国农业科学, 2016, 49(22):4265-4266.
doi: 10.3864/j.issn.0578-1752.2016.22.001
[6] 汤超华, 赵青余, 张凯, 等. 富硒农产品研究开发助力我国营养型农业发展. 中国农业科学, 2019, 52(18):3122-3133.
doi: 10.3864/j.issn.0578-1752.2019.18.005
[7] 田秀英, 王正银. 硒对苦荞产量、营养与保健品质的影响. 作物学报, 2008, 34(7):1266-1272.
[8] 铁梅, 韩杰, 李宝瑞, 等. 土壤施硒对燕麦硒含量及产量的影响. 中国农业大学学报, 2015, 20(5):74-80.
[9] 李志玉, 郭庆元, 徐巧珍, 等. 不同大豆品种积累硒的特性及基因型差异. 植物营养与肥料学报, 2000, 6(2):207-213.
[10] 张城铭, 周鑫斌. 不同施硒方式对水稻硒利用效率的影响. 土壤学报, 2019, 56(1):186-194.
[11] Hawkesford M J, Zhao F J. Strategies for increasing the selenium content of wheat. Journal of Cereal Science, 2007, 46(3):282- 292.
doi: 10.1016/j.jcs.2007.02.006
[12] 张鑫坪, 王炜鑫, 杨文祐, 等. 叶面施硒对不同小站稻品种吸收累积硒及微量元素的影响. 天津农林科技, 2021(6):6-8.
[13] 刘庆, 田侠, 史衍玺. 施硒对小麦籽粒硒富集、转化及蛋白质与矿质元素含量的影响. 作物学报, 2016, 42(2):778-783.
[14] 刘慧, 杨月娥, 王朝辉, 等. 中国不同麦区小麦籽粒硒的含量及调控. 中国农业科学, 2016, 49(9):1715-1728.
doi: 10.3864/j.issn.0578-1752.2016.09.008
[15] 王校辉, 闫红娜. 喷施富硒有机水溶肥料对冬小麦硒含量、累积量及籽粒产量质量的影响. 东北农业科学, 2021, 46(5):31-34,55.
[16] 贾亚, 琴董飞, 杨峰, 等. 喷施硒肥对黑小麦籽粒产量及硒含量的影响. 麦类作物学报, 2021, 41(10):1266-1271.
[17] 穆婷婷, 杜慧玲, 张福耀, 等. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50(1):51-63.
doi: 10.3864/j.issn.0578-1752.2017.01.005
[18] 梁晶. 叶面喷施不同硒肥对谷子产量和籽粒硒含量的影响. 农业与技术, 2019, 39(9):19-21.
[19] 周鑫斌, 赖凡, 张城铭, 等. 不同形态硒向水稻籽粒转运途径及品种差异. 土壤学报, 2017, 54(5):1251-1258.
[20] White C, Robson A, Fisher H. Variation in nitrogen, sulfur, selenium, cobalt, manganese, copper and zinc contents of grain from wheat and two lupin species grown in a range of Mediterranean environments. Crop and Pasture Science, 1981, 32(1):47-59.
[21] 李韬, 孙发宇, 龚盼, 等. 施纳米硒对小麦籽粒硒含量及其品质性状的影响. 植物营养与肥料学报, 2017, 23(2):427-433.
[22] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准食品中硒的测定:GB 5009.93-2017. 北京:中国标准出版社, 2017.
[23] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 谷物和豆类氮含量测定和粗蛋白质含量计算凯氏法:GB/T 5511-2008. 北京:中国标准出版社, 2008.
[24] 中华人民共和国国家卫生和计划生育委员会,国家食品药品监督管理总局. 食品中脂肪的测定:GB 5009.6-2016. 北京:中国标准出版社, 2016.
[25] Vadim E, Larisa J. Characteristics of selenium migration in soil- plant system of East Meshchera and Transbaikalia. Journal of Geochemical Exploration, 2010, 107(2):200-205.
doi: 10.1016/j.gexplo.2010.07.007
[26] 陈丽娜. 外源硒对燕麦生长期光合特性及硒吸收影响的研究. 沈阳:辽宁大学, 2019.
[27] 杨建军, 王海廷, 丁永峰, 等. 硒肥不同施用方法对水稻硒含量及产量的影响. 现代农业科技, 2020(18):6-7.
[28] 陈雪, 沈方科, 梁欢婷, 等. 外源施硒措施对水稻产量品质及植株硒分布的影响. 南方农业学报, 2017, 48(1):46-50.
[29] 夏方山, 王聪聪, 李红玉, 等. 硒引发对紫花苜蓿种子抗氧化性能的影响. 草地学报, 2021, 29(3):472-477.
doi: 10.11733/j.issn.1007-0435.2021.03.007
[30] White P J. Selenium metabolism in plants. Biochimica et Biophysica Acta (BBA)-General Subjects, 2018, 1862(11):2333- 2342.
doi: 10.1016/j.bbagen.2018.05.006
[31] Gissel-nielsen G, Gupta U C, Lamand M, et al. Selenium in soils and plants and its importance in livestock and human nutrition. Advances in Agronomy, 1984, 37:397-460.
[32] 徐辉碧. 生物微量元素—硒. 武汉: 华中工学院出版社,1984.
[33] 陈铭, 谭见安, 王五一. 环境硒与健康关系研究中的土壤化学与植物营养学. 土壤学进展, 1994, 22(4):1-10.
[34] 史丽娟, 白文斌, 曹昌林, 等. 外源硒对高粱产量、籽粒硒含量及品质的影响. 作物杂志, 2020(3):191-196.
[35] 马凤霞, 王沛, 张敏, 等. 叶面喷施硒肥对不同品种小麦产量及籽粒硒含量的影响. 山东农业大学学报(自然科学版), 2020, 51(1):25-30.
[36] 尚庆茂, 李平兰. 硒在高等植物中的生理作用. 植物生理学通讯, 1998(4):284-288.
[37] 李明, 介晓磊, 李建平, 等. 硒肥对莜麦常规养分和氨基酸变化规律的影响. 草地学报, 2012, 20(6):110-116.
[38] 张新军, 杨才, 曾昭海, 等. 叶面喷施硒肥对裸燕麦产量和品质的影响. 麦类作物学报, 2015, 35(3):408-412.
[39] Li J H, Yang W P, Guo A N, et al. Combined foliar and soil selenium fertilizer increased the grain yield, quality, total se, and organic Se content in naked oats. Journal of Cereal Science, 2021, 2:103265.
[40] 冯学金, 郭秀娟, 杨建春, 等. 喷施硒肥对胡麻子粒硒含量、产量及品质的影响. 作物杂志, 2019(3):155-157.
[41] 宋妍, 李粟晋, 陶阳, 等. 青稞籽粒富硒发芽条件优化及其抗氧化能力分析. 食品工业科技, 2019, 40(14):188-195,202.
[42] 张妮, 李琦, 张栋, 等. 外源硒对滴灌小麦籽粒硒含量及产量的影响. 麦类作物学报, 2015, 35(7):995-1001.
[43] Nawaz F, Ahmad R, Ashraf M Y, et al. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotoxicology and Environmental Safety, 2015, 113:191-200.
doi: 10.1016/j.ecoenv.2014.12.003 pmid: 25499052
[44] 郝玉波, 刘华琳, 慈晓科, 等. 施硒对两种类型玉米硒元素分配及产量、品质的影响. 应用生态学报, 2012, 23(2):411-418.
[45] 匡恩俊, 迟凤琴, 张久明, 等. 叶面喷硒对不同作物籽粒硒含量及产量的影响. 中国土壤与肥料, 2018, 276(4):133-136.
[46] 刘三才, 朱志华, 李为喜, 等. 谷子品种资源微量元素硒和蛋白质含量的测定与评价. 中国农业科学, 2009, 42(11):3812- 3818.
[47] 余守武, 陈合云, 郑学强, 等. 水稻籽粒硒含量的基因型差异及其与产量性状的相关性分析. 核农学报, 2011, 25(5):993- 997.
[48] Yan W K, Frégeau-Reid J, Mountain N, et al. Genotype and management evaluation based on genotype by yield*trait (GYT) analysis. Crop Breeding, Genetics and Genomics, 2019, 1(2):e190002.
[49] Yan W K, Frégeau-Reid J. Genotype by yield*trait (GYT) biplot: a novel approach for genotype selection based on multiple traits. Scientific Report, 2018, 8(1):1-10.
[1] Zhao Shifeng, Cao Lixia, Shi Bihong, Liu Wenting, Zhao Xuefeng, Liu Junxin, Zhang Lixia, Li Jiahao. Dry Matter Accumulation and Productivity Potential Evaluation of Main Forage Oat Varieties in China [J]. Crops, 2022, 38(4): 179-186.
[2] Zheng Minna, Liang Xiuzhi, Kang Jiahui, Li Yinfan, Wang Hui, Han Zhishun, Chen Yanni. Effects of Different Nitrogen Application Rates on Photosynthetic Characteristics and Nitrogen Photosynthetic Utilization Efficiency of Fed Oats [J]. Crops, 2022, 38(4): 249-254.
[3] Zhang Chunyan, Zhuang Kezhang, Wu Ronghua, Li Jing, Li Xinxin, Wang Heng, Dong Xichen, Xu Geng, Wu Benhua. Comprehensive Evaluation of 11 Feed Oat Varieties in Southern Shandong by DTOPSIS Method Based on Entropy Weighting [J]. Crops, 2022, 38(4): 62-68.
[4] Zhang Panpan, Zhang Hongpeng, Guo Yaning. Effects of Two Plant Growth Regulators on Photosynthetic Characteristics and Yield of Proso Millet [J]. Crops, 2021, 37(6): 159-163.
[5] Liu Weixing, Fan Xiaoyu, Zhang Fengye, He Qunling, Chen Lei, Li Ke, Wu Jihua. Effects of Different Preceding Crops and Seed Coating Agent Dosage on Peanut Diseases, Pests and Yield [J]. Crops, 2021, 37(6): 199-204.
[6] Zhang Qi, Wei Zhenwu, Yan Tianfang. Correlation and Path Analysis of Oat Seed Yield with Agronomic Characters in Jiang-Huai Area [J]. Crops, 2021, 37(5): 146-152.
[7] Zhao Baoping, Liu Jinghui, Ren Changzhong. Research Progress of Physiological Mechanism of Yield Formation in Oats [J]. Crops, 2021, 37(3): 1-7.
[8] Wang Lifang, Zhang Dejian, Zhang Tingting. Effects of Tillage Methods on Soil Microbial Community Diversity in Oat Fields [J]. Crops, 2021, 37(3): 57-64.
[9] Zhou Yuexia, Fan Yu, Ruan Jingjun, Yan Jun, Lai Dili, Peng Yan, Tang Yong, Weng Wenfeng, Cheng Jianping. Correlation Analysis of Oat Grain Nutrition and Agronomic Traits [J]. Crops, 2021, 37(2): 165-172.
[10] Zhou Qilong. Grey Relational Grade Evaluation of 19 Oat Varieties Introduced in Ali of Tibet [J]. Crops, 2021, 37(1): 26-31.
[11] Wang Qi, Sun Wen, Wu Junying, Liu Jinghui, Zhao Baoping. Effects of Different Irrigation Amounts and Spraying Humic Acid on Photosynthetic Characteristics and Yield of Oat [J]. Crops, 2021, 37(1): 98-103.
[12] Liu Wenting, Zhang Xinjun, Yang Cai, Bai Jing, Yang Xiaohong, Zhou Haitao. Analysis of Nutritional Quality Differences and Formation Factors of Naked Oat [J]. Crops, 2020, 36(5): 140-147.
[13] Sun Daowang, Wang Yanqing, Hong Bo, Lu Wenjie, Yin Guifang, Wang Lihua. Principal Component Analysis and Cluster Analysis of Agronomic Traits of Winter Sowing Oats in Yunnan [J]. Crops, 2020, 36(5): 80-87.
[14] Qi Bingjie, Wang Min, Zhang Zhiyong, He Xin, Liu Jinghui. Diversity Analysis of Mineral Elements in Oat Germplasm Resources [J]. Crops, 2020, 36(4): 72-78.
[15] Lai Dili,Fan Yu,Zhu Honglin,He Feng,Liang Yong,Xu Xinran,Wen Jie,Wang Junzhen,Yan Jun,Cheng Jianping. Network Analysis of Physiological and Biochemical Indexes of Salt Tolerance in Oats [J]. Crops, 2020, 36(2): 147-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!