Crops ›› 2024, Vol. 40 ›› Issue (6): 194-204.doi: 10.16035/j.issn.1001-7283.2024.06.026

Previous Articles     Next Articles

Diversity Analysis and Function Study of Culturable Endophytic Fungi in Oat Shoot

Li Xiaoting1(), Zhang Tingting2, Zhang Yanli1, Li Zhiwei1, Han Li1, Zhao Xinyao1, Zhang Yongping1, Li Lijun1()   

  1. 1Agricultural College of Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
    2Ulanqab Institute of Agriculture and Forestry Sciences, Ulanqab 012000, Inner Mongolia, China
  • Received:2023-07-28 Revised:2023-10-31 Online:2024-12-15 Published:2024-12-05

Abstract:

In order to investigate the distribution, community composition, and functional characteristics of culturable endophytic fungi leaves and stems of oats (Avena sativa L.), the endophytic fungi in leaves and stems of oats at the jointing stage in the northern foothills of Yinshan were isolated and purified by the tissue culture isolation method. Their diversity was identified and analyzed by using ITS, and the abilities of phosphate- solubilizing and potassium-solubilizing, secreting auxin (IAA) were measured. The results showed that a total of 74 endophytic fungi were isolated from the leaves and stems of oats, with the total colonization rate and the total isolation rate of 61.94% and 20.56%, respectively, they were identified as belonging to two phyla and 12 genera by molecular identification, among which Ascomycota was the dominant phylum, and Alternaria (isolation rate=5.56%, isolation frequency=27.03%) and Fusarium (isolation rate=8.06%, isolation frequency=39.19%) were the dominant species. Diversity analysis showed that the diversity of endophytic fungi isolated from stems was higher than those from leaves, with the diversity index and Simpson index being 3.51 and 0.78, respectively. Similarity analysis showed that the similarity coefficient of endophytic fungi in leaves and stems was 0.15. The functional analysis of the isolated endophytic fungi showed that 79.73% of the strains had phosphate- solubilizing, 72.97% had potassium-solubilizing, and 40.54% could secrete IAA. According to the function of endophytic fungi, 74 strains of endophytic fungi were divided into four categories, including 41, 5, 21 and 7 strains, respectively. Most of the optimal strains of the 4th category had the ability to dissolve phosphorus and potassium, and the ability to secrete IAA was the highest. There are abundant endophytic fungi species in the leaves and stems of oat, which would provide strain resources for the application of endophytic fungi. The functions of different endophytic fungi are quite distinct, and the strains with stronger functions may exert their potential growth-promoting characteristics in agricultural production, which is beneficial to the sustainable development of agriculture.

Key words: Oat, Endophytic fungi, Diversity, Phosphate-solubilizing, Potassium-solubilizing, IAA

Table 1

Sequence identification of endophytic fungi in oat"

菌株
Strain
登录号
GenBank ID
来源
Source
DNA鉴定结果
DNA identification result
相似性
Identity (%)
菌株
Strain
登录号
GenBank ID
来源
Source
DNA鉴定结果
DNA identification result
相似性
Identity (%)
OL-1 ON495971 链格孢菌 99.81 OL-38 ON500580 木贼镰孢菌 100.00
OL-2 ON495943 木贼镰孢菌 99.61 OL-39 ON500581 链格孢菌 100.00
OL-3 ON495944 链格孢菌 100.00 OL-40 ON500582 真菌 99.40
OL-4 ON495945 互隔链格孢 99.44 OL-41 ON500583 子囊菌 99.60
OL-5 ON495946 木贼镰孢菌 99.41 OL-42 ON500584 木贼镰孢菌 99.80
OL-6 ON495947 木贼镰孢菌 100.00 OL-43 ON500585 木贼镰孢菌 99.61
OL-7 ON495948 内生真菌 99.63 OL-44 ON500586 互隔链格孢 99.81
OL-8 ON495949 木贼镰孢菌 99.61 OL-45 ON500587 木贼镰孢菌 99.61
OS-9 ON495950 木贼镰孢菌 99.81 OS-46 ON500588 紧密帚枝霉 99.45
OL-10 ON495951 木贼镰孢菌 99.22 OS-47 ON500589 裂褶菌 99.50
OL-11 ON500553 木贼镰孢菌 99.22 OL-48 ON500590 细极链格孢 99.44
OS-12 ON500554 互隔链格孢 99.26 OL-49 ON500591 互隔链格孢 99.63
OL-13 ON500555 木贼镰孢菌 100.00 OS-50 ON500592 芸苔链格孢 99.26
OL-14 ON500556 木贼镰孢菌 99.41 OL-51 ON500593 木贼镰孢菌 99.80
OS-15 ON500557 木贼镰孢菌 100.00 OL-52 ON500594 子囊菌 99.40
OS-16 ON500558 互隔链格孢 99.63 OL-53 ON500595 互隔链格孢 100.00
OS-17 ON500559 芸苔链格孢 99.81 OL-54 ON500596 木贼镰孢菌 99.41
OS-18 ON500560 派伦霉 99.21 OL-55 ON500597 木贼镰孢菌 99.61
OS-19 ON500561 茎点霉 99.60 OL-56 ON500598 木贼镰孢菌 99.41
OL-20 ON500562 派伦霉 99.21 OL-57 ON500599 木贼镰孢菌 99.41
OS-21 ON500563 高粱附球菌 99.40 OL-58 ON500600 木贼镰孢菌 99.80
OS-22 ON500564 互隔链格孢 99.44 OL-59 ON500601 木贼镰孢菌 99.03
OS-23 ON500565 高粱附球菌 99.60 OL-60 ON500602 互隔链格孢 99.63
OL-24 ON500566 子囊菌 99.40 OS-61 ON500603 廯囊腔菌 99.61
OS-25 ON500567 雪球微座孢 99.42 OL-62 ON500604 木贼镰孢菌 99.61
OS-26 ON500568 派伦霉 99.40 OL-63 ON500605 木贼镰孢菌 99.41
OS-27 ON500569 小双孢腔菌 99.40 OL-64 ON500606 木贼镰孢菌 99.61
OS-28 ON500570 镰刀菌属 99.61 OS-65 ON500607 互隔链格孢 99.45
OS-29 ON500571 派伦霉 99.21 OS-66 ON500608 链格孢菌 100.00
OS-30 ON500572 春孔菌 99.62 OL-67 ON500609 木贼镰孢菌 99.61
OS-31 ON500573 链格孢菌 99.44 OL-68 ON500610 子囊菌 99.40
OS-32 ON500574 木贼镰孢菌 99.61 OS-69 ON500611 廯囊腔菌 99.61
OL-33 ON500575 小双孢腔菌 99.60 OS-70 ON500612 雪球微座孢 99.23
OL-34 ON500576 木贼镰孢菌 99.61 OS-71 ON500613 紧密帚枝霉 99.45
OL-35 ON500577 木贼镰孢菌 99.42 OL-72 ON500614 链格孢菌 100.00
OL-36 ON500578 子囊菌 99.40 OL-73 ON500615 芸苔链格孢 99.81
OL-37 ON500579 澳大利亚小光壳 99.20 OS-74 ON500616 互隔链格孢 99.44

Table 2

Community composition of endophytic fungi in oat"

门Phylum 纲Class 目Order 科Family 属Genus 种Specie N IR (%) IF (%)
Ascomycota子囊菌门 座囊菌纲 格孢腔菌目 格孢菌科 链格孢属 互隔链格孢 10 2.78 13.51
芸苔链格孢 3 0.83 4.05
链格孢菌 5 1.39 6.76
链格孢菌 1 0.28 1.35
细极链格孢 1 0.28 1.35
亚隔孢壳科 亚隔孢壳属 小双胞腔菌 2 0.56 2.70
附球菌属 高粱附球菌 2 0.56 2.70
茎点霉属 茎点霉 1 0.28 1.35
小光壳属 澳大利亚小光壳 1 0.28 1.35
派伦霉属 派伦霉 2 0.56 2.70
Peyronellaea sp.派伦霉 2 0.56 2.70
子囊菌纲 肉座菌目 丛赤壳科 镰刀菌属 木贼镰孢菌 28 7.78 37.84
镰刀菌 1 0.28 1.35
Sarocladiaceae 帚枝霉属 紧密帚枝霉 2 0.56 2.70
炭角菌目 微座囊菌科 微座孢属 Microdochium bolleyi 2 0.56 2.70
小丛壳目 小不整球囊菌科 小不整球壳属 癣囊腔菌 2 0.56 2.70
未识别的子囊菌 子囊菌 5 1.39 6.76
Basidiomycota担子菌门 伞菌纲 多孔菌目 多孔菌科 春孔菌属 春孔菌 1 0.28 1.35
伞菌目 裂褶菌科 裂褶菌属 裂褶菌 1 0.28 1.35
Unclassified_fungi未识别的真菌 2 0.56 2.70
总计Total 74 20.56 100.00

Table 3

Rates of colonization and isolation of endophytic fungi in oat"

项目Index 叶Leaf 茎Stem
培养组织块数(Nt)Number of tissue blocks 180 180
有菌组织块数(N0)Number of bacterial tissue blocks 163 160
分离菌株数(Ni)Number of isolated strains 46 28
定殖率(CR)Colonization rate (%) 90.56 88.89
分离率(IR)Isolation rate (%) 28.22 17.50

Fig.1

Isolation frequency of endophytic fungi from different organs of oat"

Table 4

Diversity of endophytic fungi in different organs of oat"

项目Index
Leaf

Stem
内生真菌
Endophytic
fungi
物种数(S)Number of species 5 9 12
卡玛戈指数Camargo’s index 0.20 0.11 0.083
多样性指数H
Shannon-Weiner diversity index
2.00 3.51 1.88
均匀度指数E(ACE) 1.03 1.46 0.71
丰富度指数R(Chao1) 1.57 1.80 3.02
辛普森指数D(Simpson) 0.62 0.78 0.76
相似性指数Cs
Sorenson’s similarity coefficient
0.15

Table 5

Classification of growth promoting functions of oat endophytic fungi mg/L"

类群
Group
菌株
Strain
解有机磷能力
Ability of organic phosphate-solubilizing
解无机磷能力
Ability of inorganic phosphate-solubilizing
解钾能力
Ability of potassium-solubilizing
IAA含量
IAA content
OL-1 21.61±2.21 23.49±1.65 17.50±1.32 0.00±0.00
OL-6 4.34±0.49 33.05±1.35 10.73±1.31 0.00±0.00
OS-9 2.01±0.27 48.97±1.21 0.00±0.00 0.00±0.00
OL-11 0.00±0.00 41.29±0.66 6.00±0.26 0.00±0.00
OL-13 1.38±0.24 26.18±1.55 0.00±0.00 0.00±0.00
OL-14 1.67±0.93 18.30±1.86 1.60±0.60 0.00±0.00
OS-15 1.51±0.84 45.07±4.86 11.05±0.93 0.00±0.00
OS-16 2.66±0.12 27.28±1.37 28.67±1.29 0.00±0.00
OS-21 7.37±0.90 19.65±0.60 0.00±0.00 0.00±0.00
OS-22 14.75±3.93 28.13±1.58 0.00±0.00 0.00±0.00
OS-23 13.57±1.05 20.39±1.68 0.00±0.00 0.00±0.00
OL-24 7.18±0.52 0.00±0.00 0.00±0.00 0.00±0.00
OS-26 5.56±0.27 23.54±2.78 19.13±0.35 0.00±0.00
OS-27 6.23±0.54 16.41±0.58 16.55±1.27 0.00±0.00
OS-29 9.37±0.34 20.89±1.59 33.77±0.90 0.00±0.00
OS-31 12.21±2.75 34.29±2.72 11.20±0.42 0.00±0.00
OS-32 1.93±0.16 41.59±3.93 4.10±0.66 0.00±0.00
OL-33 5.23±0.35 12.38±0.56 0.00±0.00 0.00±0.00
OL-34 4.20±0.28 21.46±0.94 20.10±0.57 0.00±0.00
OL-35 7.17±0.34 37.22±2.72 3.47±0.57 0.00±0.00
OL-36 10.70±0.46 0.00±0.00 0.00±0.00 0.00±0.00
OL-37 12.95±2.11 18.12±0.99 10.27±0.36 0.00±0.00
OL-38 4.97±0.23 28.50±2.47 0.00±0.00 0.00±0.00
OL-40 1.66±0.22 18.76±1.62 0.00±0.00 0.00±0.00
OL-41 5.31±0.12 0.00±0.00 6.23±0.21 0.00±0.00
OL-43 0.00±0.00 19.38±1.51 1.63±0.29 0.00±0.00
OL-44 9.67±0.79 9.46±0.37 0.00±0.00 0.00±0.00
OL-45 1.13±0.26 20.08±2.95 22.40±2.93 0.00±0.00
OS-47 1.47±0.13 22.93±1.94 6.15±0.21 0.00±0.00
OL-48 5.14±0.93 18.85±1.02 24.37±5.40 0.00±0.00
OL-49 6.69±0.81 24.13±1.84 33.40±2.55 0.00±0.00
OL-52 6.87±0.15 32.84±3.12 0.00±0.00 0.00±0.00
OL-58 4.79±0.24 0.00±0.00 0.00±0.00 0.00±0.00
OL-59 1.57±0.53 28.86±1.83 0.00±0.00 0.00±0.00
OS-61 0.00±0.00 47.13±3.58 0.00±0.00 13.51±1.26
OL-64 0.00±0.00 24.07±1.22 8.85±0.46 0.00±0.00
OL-68 9.71±0.25 17.39±0.73 7.77±0.11 0.00±0.00
OS-70 15.67±0.41 24.62±1.31 0.00±0.00 0.00±0.00
OS-71 9.85±0.40 30.84±3.74 4.57±0.38 0.00±0.00
OL-73 9.61±0.94 24.57±1.09 12.90±1.84 0.00±0.00
OS-74 0.00±0.00 28.50±2.12 14.90±1.98 0.00±0.00
OL-4 10.95±1.33 27.37±2.06 53.33±1.25 21.12±0.26
OL-5 3.39±0.43 29.58±1.09 43.00±2.13 0.00±0.00
OS-25 4.57±0.26 13.75±0.42 51.77±1.89 0.00±0.00
OS-28 2.42±0.61 47.13±1.93 25.90±0.71 0.00±0.00
OL-62 1.32±0.18 40.01±2.87 40.67±1.76 0.00±0.00
OL-2 3.41±0.69 27.97±0.97 31.27±2.62 53.33±1.22
OL-3 13.17±2.81 20.38±1.12 13.33±2.32 37.68±1.88
OS-12 6.24±0.54 24.93±1.18 26.37±1.78 49.36±0.46
OS-17 8.06±0.21 16.09±0.11 12.80±1.47 53.98±1.85
OS-18 5.05±0.11 18.10±0.74 46.27±2.87 57.22±0.62
OS-19 14.81±0.28 21.47±1.99 27.37±2.95 61.18±1.89
OL-20 13.82±4.57 0.00±0.00 0.00±0.00 58.75±0.88
OS-30 0.00±0.00 41.28±2.84 0.00±0.00 47.97±1.29
OL-42 4.84±0.28 32.87±0.64 34.25±2.33 60.75±2.19
OL-51 8.97±0.25 22.42±1.69 22.14±3.37 38.32±0.10
OL-53 10.40±0.61 23.62±2.43 18.27±2.83 60.05±2.06
OL-54 5.88±0.17 28.72±1.22 12.62±0.21 65.99±3.35
OL-55 0.00±0.00 24.34±1.59 10.45±1.06 47.46±1.38
OL-56 2.05±0.25 19.13±1.13 8.70±0.14 50.61±0.44
OL-57 1.09±0.09 0.00±0.00 31.73±2.75 75.26±2.24
OL-60 5.73±0.27 22.60±1.46 59.37±3.16 53.99±0.24
OL-63 7.25±0.13 26.34±0.89 20.30±3.56 49.52±0.89
OS-65 9.69±0.35 22.23±0.46 0.00±0.00 57.01±0.53
OL-67 5.87±0.18 33.27±2.07 11.90±1.62 54.09±1.58
OS-69 1.56±0.17 28.59±1.95 33.63±2.61 41.19±0.53
OL-72 6.63±0.78 24.77±1.73 17.00±1.75 40.48±1.18
OL-7 8.49±0.43 20.28±0.19 18.05±0.43 89.45±5.13
OL-8 3.61±0.15 28.53±0.97 11.65±0.35 81.75±1.88
OL-10 0.00±0.00 42.07±0.62 33.30±1.61 96.61±2.15
OL-39 7.51±0.32 0.00±0.00 7.63±0.38 99.90±3.58
OS-46 2.55±0.16 28.87±2.30 0.00±0.00 85.08±2.16
OS-50 15.14±1.85 22.37±1.33 12.20±1.44 79.48±0.20
OS-66 16.53±0.52 24.02±0.44 39.13±0.75 93.71±3.55

Table 6

Equivalent tests of the means of each indicator for different categories"

指标Index FF-value df1 df2 PP-value
解有机磷能力Ability of organic phosphorus-solubilizing 0.432 3 70 0.730
解无机磷能力Ability of inorganic phosphate-solubilizing 0.805 3 70 0.495
解钾能力Ability of potassium-solubilizing 14.961 3 70 0.000
IAA含量IAA content 642.887 3 70 0.000

Fig.2

Scatter plot of the classification of endophytic fungi in oat"

Table 7

Eigenvalues of discriminant analysis function"

判别函数
Discriminant function
特征值
Eigenvalue
方差贡献率
Variance contribution rate (%)
累计贡献率
Accumulated contribution rate (%)
典型相关系数
Canonical correlation coefficient
1 28.149 97.94 97.94 0.983
2 0.584 2.03 99.97 0.607
3 0.009 0.03 100.00 0.092
[1] Hardoim P R, van Overbeek L S, Berg G, et al. The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 2015, 79(3):293-320.
doi: 10.1128/MMBR.00050-14 pmid: 26136581
[2] 曹艳. 冬青卫矛内生菌的分离及其活性代谢物研究. 杨凌:西北农林科技大学, 2016.
[3] 卢占慧. 人参内生菌群落多样性及拮抗菌株的抑菌作用研究. 沈阳:沈阳农业大学, 2016.
[4] 王志伟, 纪燕玲, 陈永敢. 植物内生菌研究及其科学意义. 微生物学通报, 2015, 42(2):349-363.
[5] Ofek-Lalzar M, Gur Y, Ben-Moshe S, et al. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis. Fems Microbiology Ecology, 2016, 92(10):152.
[6] Yuan Z L, Zhang C L, Lin F C, et al. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Applied and Environmental Microbiology, 2010, 76(5):1642-1652.
[7] 辛赫文, 徐建强, 杨岚, 等. 河南省小麦根、茎部内生真菌多样性及平板拮抗活性研究. 植物病理学报, 2022, 52(6):1-5.
[8] 秦华伟, 门兴元, 卢增斌, 等. 山东省不同地区玉米内生真菌的群落组成和多样性分析. 植物保护学报, 2020, 47:35-42.
[9] Schulz B J E, Boyle C J C, Sieber T N. Microbial root endophytes. Heidelberg:Springer, 2006.
[10] Young C A, Hume D E, Mcculley R L. Forages and pastures symposium: fungal endophytes of tall fescue and perennial ryegrass: pasture friend or foe?. Journal of Animal Science, 2013, 91(5):2379-2394.
doi: 10.2527/jas.2012-5951 pmid: 23307839
[11] Waqas M, Khan A L, Kamran M, et al. Endophytic fungi produce gibberellins and indoleacetic acid and promotes host-plant growth during stress. Molecules, 2012, 17(9):10754-10773.
doi: 10.3390/molecules170910754 pmid: 22960869
[12] Adhikari P, Pandey A. Phosphate solubilization potential of endophytic fungi isolated from Taxus wallichiana Zucc. roots. Rhizosphere, 2019, 9:2-9.
[13] 詹寿发, 卢丹妮, 毛花英, 等. 2株溶磷、解钾与产IAA的内生真菌菌株的筛选、鉴定及促生作用研究. 中国土壤与肥料, 2017(3):142-151.
[14] 徐萌, 王金缘, 胡金丽, 等. 植物内生菌对大豆促生长和抗胁迫作用的研究进展. 大豆科学, 2017, 36(6):965-969,977.
[15] Puri A, Padda K P, Chanway C P. Seedling growth promotion and nitrogen fixation by a bacterial endophyte Paenibacillus polymyxa P2b-2R and its GFP derivative in corn in a long-term trial. Symbiosis, 2016, 69(2):123-129.
[16] Nouh F A. Endophytic fungi for sustainable agriculture. Microbial Biosystems, 2019, 4(1):31-44.
[17] Baron N C, Rigobelo E C. Endophytic fungi: a tool for plant growth promotion and sustainable agriculture. Mycology, 2022, 13(1):39-55.
doi: 10.1080/21501203.2021.1945699 pmid: 35186412
[18] 刘军, 刘艳明, 徐在超, 等. 檀香内生真菌多样性及其抗菌与促生特性的研究. 中国中药杂志, 2018, 43(17):3477-3483.
[19] Edwards K, Johnstone C, Thompson C. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 1991, 19(6):1349.
doi: 10.1093/nar/19.6.1349 pmid: 2030957
[20] Schoch C L, Seifert K A, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16):6241-6246.
[21] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科学技术出版社, 2000.
[22] 罗娜, 周德明, 徐睿, 等. 降香黄檀、檀香根际解钾菌的筛选与活性研究. 热带作物学报, 2016, 37(5):964-970.
[23] 刘丽辉, 蒋慧敏, 区宇程, 等. 南方野生稻内生细菌的分离鉴定及促生作用. 应用与环境生物学报, 2020, 26(5):1051-1058.
[24] 罗鑫, 于存. 贵州马尾松内生真菌多样性. 菌物学报, 2021, 40(3):531-546.
doi: 10.13346/j.mycosystema.200251
[25] 贾彤, 曹苗文, 周永娜, 等. 庞泉沟自然保护区常见禾本科植物内生真菌分布及其影响因素. 生态学报, 2017, 37(4):1103-1110.
[26] 白浩楠, 牛香, 王兵, 等. 毛竹扩展对鹿角杜鹃叶内生真菌群落多样性的影响. 生态学杂志, 2021, 40(12):3849-3859.
[27] 刘永兰, 张丽娜, 梁路, 等. 贵州赤水桫椤自然保护区桫椤内生真菌多样性研究. 菌物学报, 2021, 40(12):1-12.
[28] Vieira M L, Hughes A F, Gil V B, et al. Diversity and antimicrobial activities of the fungal endophyte community associated with the traditional Brazilian medicinal plant Solanum cernuum Vell. (Solanaceae). Canadian Journal of Microbiology, 2012, 58(1):54-66.
[29] Arnold A E, Miadlikowska J, Higgins K L, et al. A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification?. Systematic Biology, 2009, 58(3):283-297.
doi: 10.1093/sysbio/syp001 pmid: 20525584
[30] 苗文莉. 小麦内生真菌多样性及其与宿主关系研究. 郑州:郑州大学, 2011.
[31] 禹乐乐. 玉米内生真菌多样性及其与宿主关系研究. 郑州:郑州大学, 2012.
[32] 潘文文. 卷柏内生真菌多样性及其对小麦抗旱性的影响. 郑州:郑州大学, 2016.
[33] Lofgren L A, Leblanc N R, Certano A K, et al. Fusarium graminearum: pathogen or endophyte of North American grasses?. New Phytologist, 2018, 217(3):1203-1212.
doi: 10.1111/nph.14894 pmid: 29160900
[34] Dai C C, Yu B Y, Li X. Screening of endophytic fungi that promote the growth of Euphorbia pekinensis. African Journal of Biotechnology, 2008, 7(19):3505-3510.
[35] 代梦雪, 张光群, 范旭杪, 等. 胁迫生境深色有隔内生真菌生态分布与功能研究进展. 应用与环境生物学报, 2020, 26(3):722-729.
[36] Massimo N C, Nandi Devan M M, Arendt K R, et al. Fungal endophytes in aboveground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts. Microbial Ecology, 2015, 70(1):61-76.
doi: 10.1007/s00248-014-0563-6 pmid: 25645243
[37] Sadeghi F, Samsampour D, Seyahooei M A, et al. Diversity and spatiotemporal distribution of fungal endophytes associated with Citrus reticulata cv. Siyahoo. Current Microbiology, 2019, 76(3):279-289.
[38] Sun X, Ding Q, Hyde K D, et al. Community structure and preference of endophytic fungi of three woody plants in a mixed forest. Fungal Ecology, 2012, 5(5):624-632.
[39] Siddique A B, Biella P, Unterseher M, et al. Mycobiomes of young beech trees are distinguished by organ rather than by habitat, and community analyses suggest competitive interactions among twig fungi. Frontiers in Microbiology, 2021, 12:646302.
[40] Harrison J G, Griffin E A. The diversity and distribution of endophytes across biomes, plant phylogeny and host tissues: how far have we come and where do we go from here?. Environmental Microbiology, 2020, 22(6):2107-2123.
doi: 10.1111/1462-2920.14968 pmid: 32115818
[41] Yuan Z S, Liu F, Zhang G F. Characteristics and biodiversity of endophytic phosphorus- and potassium-solubilizing bacteria in Moso Bamboo (Phyllostachys edulis). Acta Biologica Hungarica, 2015, 66(4):449-459.
[42] Singh B P. Advances in endophytic fungal research: present status and future challenges. Berlin,Germany:Springer, 2019.
[43] 唐嘉城, 梁毅珉, 马葭思, 等. 百香果内生细菌多样性及促生长特性. 生物科技通报, 2022, 38(1):86-97.
[44] Nath R, Sharma G D, Barooah M. Plant growth promoting endophytic fungi isolated from tea (Camellia Sinensis) shrubs of Assam, India. Applied Ecology and Environmental Research, 2015, 13(3):877-891.
[45] Hassan E D. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.. Journal of Advanced Research, 2017, 8(6):687-695.
[46] Liao X G, Lovett B, Fang W G, et al. Metarhizium robertsii produces indole-3-acetic acid, which promotes root growth in Arabidopsis and enhances virulence to insects. Microbiology, 2017, 163(7):980-991.
[1] Li Feng, Gao Hongyun, Zhang Chong, Zhang Baoying, Ma Jianfu, Guo Na, Bai Wei, Fang Aiguo, Yang Zhimin, Li Yuan. Effects of Salt Stress on Growth and Physiological Indexes of Oat [J]. Crops, 2024, 40(6): 140-146.
[2] Mao Xianghong, Fan Xiangbin, Bai Xiaodong, Lu Yao, Du Peibing. Genetic Diversity Analysis of Introduced Potato Germplasm Resources in Northern Shanxi Province Based on SSR Molecular Markers [J]. Crops, 2024, 40(5): 54-59.
[3] Yuan Di, Zhi Hui, Wang Haigang, Zhang Hui, Yao Qi, Liang Hongkai, Wang Junjie, Chen Ling, Diao Xianmin, Jia Guanqing. Genetic Diversity Analysis and Comprehensive Evaluation of Registered Varieties of Foxtail Millet in China [J]. Crops, 2024, 40(4): 14-23.
[4] Hu Lianqing, Chen Lu, Liu Wenwen, Zhou Wanhai, Feng Ruizhang, Wei Qin, Zhao Xin, Shu Hao, Chen Lingmei, Chen Yuwei. Investigation on the Diversity of Endophytic Bacteria and Screening of Functional Strains in Waxy Sorghum for Brewing [J]. Crops, 2024, 40(4): 194-202.
[5] Li Qingchao, Zhang Dengfeng, Li Chunhui, Yang Shan, Liu Jianxin, Wu Xun. Genetic Diversity Analysis and Comprehensive Evaluation of Maize Landraces in Southwest China [J]. Crops, 2024, 40(4): 24-32.
[6] Fan Yu, Feng Liang, Wang Junzhen, Yang Qiaohui, Ren Yuanhang, Zhang Kaixuan, Zou Liang, Zhou Meiliang, Xiang Dabing. Nutritional Composition Analysis of Different Oats Varieties [J]. Crops, 2024, 40(4): 71-81.
[7] Dai Han, Shen Tie, Shi Taoxiong, Li Ruiyuan. Genomic SSR Loci Mining and Genetic Diversity Analysis of Camellia oleifera Based on Genome Sequences [J]. Crops, 2024, 40(3): 23-31.
[8] Ma Hongzhen, Xu Haitao, Wang Yue, Feng Xiaoxi, Xu Bo, Zhang Jungang, Guo Haibin, Wang Youhua. Analysis of Genetic Diversity and Genetic Distance of Maize Inbred Lines Based on Phenotypic Traits of Husks [J]. Crops, 2024, 40(3): 54-63.
[9] Quan Chengzhe, Li Shufang, Li Henan, Yu Wei, Jin Jinghua. Genetic Diversity Study of Phenotypic Traits of 73 Rice Varieties by Approved in Jinlin Province [J]. Crops, 2024, 40(3): 64-75.
[10] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[11] Yang Enze, Xie Rui, Han Ping'an, Zhang Yonghu, Liu Jinchuan, Niu Suqing, Wen Rui, Wang Chunyong, Jin Xiaolei. Genetic Diversity and Comprehensive Evaluation of Phenotypic Traits of 162 Tartary Buckwheat Resources in Inner Mongolia [J]. Crops, 2024, 40(2): 15-22.
[12] Chen Lin, Yao Xiaohua, Yao Youhua, Bai Yixiong, Wu Kunlun. Diversity Analysis of Grain Appearance and Quality Traits of Hulless Barley Varieties on the Qinghai-Tibet Plateau [J]. Crops, 2024, 40(2): 213-220.
[13] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[14] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[15] Liu Dan, Wang Jiayu, Feng Zhangli, Feng Bo, Chen Wenfu. Analysis on Genetic Diversity and Population Structure for Japonica Rice Varieties in Liaoning Province [J]. Crops, 2024, 40(1): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!