Crops ›› 2024, Vol. 40 ›› Issue (2): 122-128.doi: 10.16035/j.issn.1001-7283.2024.02.015

Previous Articles     Next Articles

Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat

Sun Yueying(), Liu Jinghui(), Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan   

  1. College of Agriculture, Inner Mongolia Agricultural University, Hohhot 010019, Inner Mongolia, China
  • Received:2022-12-12 Revised:2023-01-17 Online:2024-04-15 Published:2024-04-15

Abstract:

In order to investigate the growth-promoting effect of lactic acid bacteria compound preparation on the actual production of oat, field tests were carried out simultaneoussly in the dryland area at the north foot of Yin Mountain and in the loess hilly area in 2021. Four treatments including conventional fertilization (A), conventional fertilization + lactic acid bacteria compound preparation (AB), single application of lactic acid bacteria compound preparation (B) and no fertilization (CK) were set up to study the effects of different treatments on the emergence rates, morphological indexes, dry matter accumulation and yields of oat. The results demonstrated that, in the two test sites, the various treatments displayed the same tendency. In comparison to CK, the dry farming area of loess hill experienced a greater rise in the seedling emergence rate, plant height, stem diameter, leaf area, and dry matter accumulation of oat under AB treatment. Similarly, compared with CK, AB treatment significantly increased the spike length, grain weight per spike, grain number per spike, 1000-grain weight, biological yield and grain yield of oat in the two test sites, and the effect was the best in the dry farming area of loess Hill. The oat yields in both test sites exhibited noteworthy or highly significant positive correlations with seedling emergence rate, earbearing tiller rate, plant height, stem diameter, leaf area, and dry matter accumulation of aboveground part, furthermore, the yield and characteristics correlation were stronger in the loess hilly dry area, and the characteristics correlation were also significant or extremely significant.

Key words: Oats, Lactic acid bacteria compound preparation, Morphological indexes, Yield

Table 1

Basic physical and chemical properties of soil in 0-20 cm soil layer in the test sites"

试验地
Test site
全氮
Total nitrogen
(g/kg)
全磷
Total phosphorus
(g/kg)
碱解氮
Alkali hydrolyzed
nitrogen (mg/kg)
全钾
Total potassium
(g/kg)
有效磷
Available
phosphorus (mg/kg)
速效钾
Available
potassium (mg/kg)
有机质
Organic
matter (g/kg)
pH
试验地一Test site 1 1.36 0.74 76.25 0.52 14.12 112.35 11.69 8.04
试验地二Test site 2 0.64 0.43 37.10 11.58 6.55 118.90 5.96 8.34

Fig.1

Precipitation and accumulated temperature of the two test sites during the test SS: Sowing-seedling stage, SJ: Seedling stage-jointing stage, JH: Jointing stage-heading stage, HF: Heading stage-filling stage, FM: Filling stage-maturity stage."

Table 2

Fertilizer application rate of each treatment in the test sites"

处理Treatment 试验地一Test site 1 试验地二Test site 2
A 复合肥(N-P2O5-K2O=18-18-18)150 kg/hm2 磷酸二铵(N-P2O5-K2O=18-46-0)300 kg/hm2
AB 复合肥(N-P2O5-K2O=18-18-18)150 kg/hm2+15 kg/hm2
乳酸菌复合制剂
磷酸二铵(N-P2O5-K2O=18-46-0)300 kg/hm2+15 kg/hm2
乳酸菌复合制剂
B 15 kg/hm2乳酸菌复合制剂 15 kg/hm2乳酸菌复合制剂
CK 0 0

Table 3

Oat emergence rates and earbearing tiller rates under different treatments %"

试验地
Test site
处理
Treatment
出苗率
Emergence rate
成穗率
Earbearing tiller rate
试验地一
Test site 1
CK 81.96±1.70c 85.02±0.84b
A 85.16±2.26ab 86.34±1.61ab
AB 86.89±1.50a 88.29±0.79a
B 82.77±0.60bc 85.29±0.95b
试验地二
Test site 2
CK 68.39±2.58d 76.29±2.41b
A 75.68±1.40b 78.80±1.23ab
AB 79.42±1.10a 81.38±1.12a
B 72.35±1.05c 76.79±2.29b

Table 4

Effects of different treatments on morphological indexes of oat plants in the two test sites"

试验地Test site 生育时期Growth stage 处理Treatment 株高Plant height (cm) 茎粗Stem diameter (mm) 叶面积Leaf area (cm2)
试验地一
Test site 1
拔节期 CK 66.17±3.23c 4.18±0.03c 64.98±5.77c
A 72.67±2.27b 4.34±0.13b 74.62±4.17b
AB 79.27±2.06a 4.61±0.16a 80.13±5.01a
B 69.73±3.93bc 4.24±0.08bc 69.91±2.09c
抽穗期 CK 83.83±3.30b 4.34±0.08b 85.81±6.18b
A 94.17±5.55a 4.56±0.16ab 99.09±2.60a
AB 100.17±6.10a 4.79±0.17a 103.13±4.12a
B 95.03±5.45b 4.56±0.18ab 97.83±7.09a
灌浆期 CK 100.50±2.92c 4.62±0.13b 101.77±3.30b
A 111.53±8.03ab 4.81±0.04ab 112.88±3.83ab
AB 114.33±6.11a 4.92±0.09a 120.48±2.04a
B 105.44±1.76bc 4.77±0.14ab 106.73±10.13b
试验地二
Test site 2
拔节期 CK 38.77±2.67c 3.44±0.13b 39.66±2.68b
A 46.67±4.82ab 3.78±0.27b 49.29±1.00a
AB 48.73±2.10a 4.13±0.11a 58.65±2.95a
B 40.65±3.66bc 3.53±0.09b 43.58±3.24ab
抽穗期 CK 52.20±3.50b 3.54±0.05c 55.37±3.67b
A 61.73±3.44a 3.82±0.12b 71.59±6.04a
AB 63.03±3.91a 4.18±0.12a 79.33±4.34a
B 56.90±1.91ab 3.64±0.07c 60.47±6.52ab
灌浆期 CK 73.50±3.06c 4.15±0.04a 75.07±4.71c
A 79.83±2.05ab 4.26±0.04a 84.26±8.20b
AB 85.27±3.38a 4.64±0.12a 92.38±6.25a
B 76.77±4.74c 4.21±0.04a 81.72±2.53ab

Fig.2

Dynamic changes of aboveground dry matter accumulation in oat under different treatments The different lowercase letters indicate significant difference at 0.05 level."

Table 5

Oat yield and its compositions under different treatments in the two test sites"

试验地
Test site
处理
Treatment
穗长
Spike length
(cm)
千粒重
1000-grain
weight (g)
穗粒数
Grain number
per spike
穗粒重
Grain weight
per spike (g)
籽粒产量
Grain yield
(kg/hm2)
生物产量
Biological yield
(kg/hm2)
试验地一
Test site 1
CK 17.50±0.98c 28.50±0.56b 78.67±4.04c 2.29±0.15b 4132.43±145.90c 12 948.84±715.64c
A 22.03±2.12b 30.40±0.79a 108.33±6.43b 3.17±0.27a 4554.34±131.82ab 15 341.85±1224.83b
AB 25.10±1.77a 30.87±0.25a 120.00±5.57a 3.32±0.17a 4754.34±131.82a 17 404.05±890.97a
B 18.80±1.18c 29.70±0.89ab 85.00±7.21c 2.50±0.10b 4297.13±168.49bc 14 185.57±502.92bc
试验地二
Test site 2
CK 16.70±0.50c 25.40±1.11b 53.00±8.19c 1.19±0.14c 2480.59±120.16b 8718.75±336.52c
A 19.67±0.93ab 26.13±0.55ab 71.33±7.64b 1.85±0.23ab 3019.68±234.06a 11 198.35±732.15b
AB 21.10±0.37a 27.57±1.20a 86.67±10.07a 2.08±0.24a 3279.23±197.93a 13 484.27±566.49a
B 18.57±1.06b 25.80±0.53ab 62.67±6.03bc 1.55±0.10ab 2645.82±189.87b 9825.41±197.77c

Table 6

Correlation analysis between yield and main traits under different treatments"

试验地
Test site
性状
Trait
生物产量
Biological
yield
籽粒产量
Grain
yield
出苗率
Emergence
rate
成穗率
Earbearing
tiller rate
株高
Plant
height
茎粗
Stem
diameter
叶面积
Leaf
area
地上部干物质积累量
Dry matter accumulation
of aboveground part
试验地一
Test site 1
生物产量 1.000
籽粒产量 0.874** 1.000
出苗率 0.674* 0.725** 1.000
成穗率 0.691* 0.656* 0.779** 1.000
株高 0.694* 0.717** 0.709** 0.739** 1.000
茎粗 0.674* 0.632* 0.677* 0.652* 0.692* 1.000
叶面积 0.851** 0.784** 0.628* 0.756** 0.773** 0.465 1.000
地上部干物质积累量 0.833** 0.865** 0.754** 0.870** 0.708** 0.678* 0.782** 1.000
试验地二
Test site 2
生物产量 1.000
籽粒产量 0.816** 1.000
出苗率 0.920** 0.797** 1.000
成穗率 0.807** 0.671* 0.809** 1.000
株高 0.811** 0.836** 0.856** 0.851** 1.000
茎粗 0.924** 0.741** 0.802** 0.729** 0.734** 1.000
叶面积 0.866** 0.502 0.820** 0.585* 0.554 0.762** 1.000
地上部干物质积累量 0.884** 0.938** 0.805** 0.707* 0.753** 0.810** 0.590* 1.000
[1] 林吉恒, 王睿之, 马风兰, 等. 植物益生菌对植物的益生效应及其应用. 中国生物防治, 2010, 26(增1):100-105.
[2] Kevin V J. Plant growth promoting rhizobacteria as biofertilizers. Plant and Soil, 2003, 255(2):571-586.
doi: 10.1023/A:1026037216893
[3] 曹振辉, 刘永仕, 潘洪彬, 等. 乳酸菌的益生功能及作用机制研究进展. 食品工业科技, 2015, 36(24):366-370,377.
[4] Zhao X H, Wang J. A brief study on the degradation kinetics of seven organophosphorus pesticides in skimmed milk cultured with Lactobacillus spp. at 42℃. Food Chemistry, 2011, 131(1):300-304.
doi: 10.1016/j.foodchem.2011.08.046
[5] 高鹏飞, 姚国强, 赵树平, 等. 乳酸菌在农产品种植及其质量安全中的研究进展. 中国农业科技导报, 2014, 16(6):143-148.
[6] 邵秀丽. 复合微生物菌剂制备及在大蒜生产中的应用. 郑州: 河南农业大学, 2010.
[7] 冀宇婷, 刘晨, 吴丹薇, 等. 微生态叶面肥促进小麦生长的效应. 生物技术世界, 2012, 10(4):46-49,51.
[8] 周游, 李海梅, 赵金山, 等. 乳酸菌对草莓生长和品质性状的影响. 江苏农业学报, 2017, 33(5):1124-1128.
[9] 周游, 赵金山, 李海梅, 等. 乳酸菌对茶树生长和品质性状的影响. 江西农业学报, 2017, 29(10):31-34.
[10] 郜春花, 王岗, 董云中, 等. 解磷菌剂盆栽及大田施用效果. 山西农业科学, 2003(3):40-43.
[11] 赵宝平, 刘景辉, 任长忠. 燕麦产量形成生理机制研究进展. 作物杂志, 2021(3):1-7.
[12] 徐长林. 高寒牧区不同燕麦品种生长特性比较研究. 草业学报, 2012, 21(2):280-285.
[13] Peter R S. Oats: chemistry and technology. Journal of Cereal Science, 2011, 53(2):269.
doi: 10.1016/j.jcs.2011.01.007
[14] 龚玉圆, 冯媛, 王晓龙, 等. 加工方式对燕麦制品营养成分及功能特性的影响. 中国粮油学报, 2020, 35(9):21-27.
[15] 任长忠, 崔林, 何峰, 等. 我国燕麦荞麦产业技术体系建设与发展. 吉林农业大学学报, 2018, 40(4):524-532.
[16] 李雁鸣. 燕麦叶面积测定方法的初步研究. 河北农业大学学报, 1993, 16(1):25-28.
[17] 赵世锋, 刘君馨, 曹丽霞, 等. 冀北坝上不同土壤类型对燕麦出苗率的影响. 中国农业文摘∙农业工程, 2021, 33(1):46-49.
[18] Limanska N, Ivanytsia T, Basiul O, et al. Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiologiae Plantarum, 2013, 35(5):1587-1595.
doi: 10.1007/s11738-012-1200-y
[19] 强磊. 乳酸菌及其代谢产物对植物病害的防治和增产研究. 中国园艺文摘, 2014, 30(10):37,114.
[20] 侯景清. 乳酸菌复合制剂在蔬菜种植及盐碱地培肥中的应用. 呼和浩特: 内蒙古农业大学, 2019.
[21] 于深州. 微生物菌肥对水稻产量的影响试验. 北方水稻, 2017, 47(2):38-39.
[22] 王明友, 杨秀凤, 郑宪和, 等. 复合微生物菌剂对番茄的光合特性及产量品质的影响. 土壤肥料, 2004(4):37-39.
[23] 任长忠, 胡跃高. 中国燕麦学. 北京: 中国农业出版社, 2013.
[24] 尹江, 杨素梅, 田长叶, 等. 不同生态区裸燕麦产量构成因素分析. 华北农学报, 1993, 8(增1):38-42.
[25] 全国土壤普查办公室. 中国土壤. 北京: 中国农业出版社, 1998.
[26] 雷先德, 李金文, 徐秀玲, 等. 微生物菌剂对菠菜生长特性及土壤微生物多样性的影响. 中国生态农业学报, 2012, 20(4):488-494.
[27] 侯景清, 王旭, 陈玉海, 等. 乳酸菌复合制剂对盐碱地改良及土壤微生物群落的影响. 南方农业学报, 2019, 50(4):710-718.
[28] 褚长彬, 吴淑杭, 张学英, 等. 有机肥与微生物肥配施对柑橘土壤肥力及叶片养分的影响. 中国农学通报, 2012, 28(22):201-205.
[29] Zlotnikov K M, Zlotnikov A K, Kaparullina E N, et al. Phylogenetic position and phosphate solubilizat activity of lactic acid bacteria associated with different plants. Microbiology, 2014, 82(3):393-396.
doi: 10.1134/S0026261713030144
[30] María S A, Ornella F, Jorge G A, et al. Genetic diversity of phosphate-solubilizing peanut (Arachis hypogaea L.) associated bacteria and mechanisms involved in this ability. Symbiosis, 2013, 60(3):143-154.
doi: 10.1007/s13199-013-0250-2
[31] 孙洪仁, 曾红, 刘江扬, 等. 中国农牧交错带燕麦土壤有效磷丰缺指标与适宜施磷量初步研究. 中国农学通报, 2018, 34(10):101-105.
doi: 10.11924/j.issn.1000-6850.casb17030148
[32] 来璐, 郝明德, 彭令发. 土壤磷素研究进展. 水土保持研究, 2003(1):65-67.
[33] 马海林, 杜秉海, 邢尚军, 等. 解磷、解钾根际促生菌的筛选与鉴定. 山东林业科技, 2013, 43(6):1-4.
[34] Hariprasad P, Niranjana S R. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant and Soil, 2009, 316:13-24.
doi: 10.1007/s11104-008-9754-6
[1] Wang Han, Zheng Dechao, Tian Qinqin, Wu Xiaojing, Zhou Wenxin, Yi Zhenxie. Effects of Harvest Time on Yield and Cadmium Accumulation and Distribution Characteristics of Early Rice [J]. Crops, 2024, 40(2): 105-112.
[2] Sun Tong, Yang Yushuang, Ma Ruiqi, Zhu Yingjie, Chang Xuhong, Dong Zhiqiang, Zhao Guangcai. Effects of PASP-KT-NAA and Ethylene-Chlormequat-Potassium on the Lodging Resistance, Yield, and Quality of Wheat [J]. Crops, 2024, 40(2): 113-121.
[3] Xu Zheli, Zhu Weiqi, Wang Litao, Shi Feng, Wei Zhiying, Wang Lina, Qiu Hongwei, Zhang Xiaoying, Li Huili. Effects of Irrigation and Foliar Nitrogen Application on Yield, Quality and Photosynthetic Characteristics of Late Sowing Wheat [J]. Crops, 2024, 40(2): 139-147.
[4] Xiao Min, Guo Lang, Cui Can, Cheng Zhouqi, Liu Yuwu, Zhuo Le, Wu Si, Yi Zhenxie. Effects of Phosphate Fertilizer Management on Yield Components and Nutrient Uptake and Utilization in Mechanical Transplanting Double-Cropping Rice [J]. Crops, 2024, 40(2): 178-188.
[5] Xie Mengfan, Jia Haijiang, Qu Yuankai, Nong Shiying, Li Junlin, Wang Jie, Liu Liwei, Yan Huifeng. Effects of Planting Density and Nitrogen Fertilizer Application Rate on Leaf Development and Yield of Flue-Cured Tobacco in Baise Tobacco Region [J]. Crops, 2024, 40(2): 189-197.
[6] Wang Huaiping, Yang Mingda, Zhang Suyu, Li Shuai, Guan Xiaokang, Wang Tongchao. Effects of Different Water-Saving Irrigation Modes on Growth, Yield, and Water Utilization of Summer Maize [J]. Crops, 2024, 40(2): 206-212.
[7] Zhang Lei, Dong Kongjun, He Jihong, Ren Ruiyu, Liu Tianpeng, Yang Tianyu. Study on the Difference of Nitrogen and Phosphorus Uptake of Different Genotypes of Proso Millet (Panicum miliaceum L.) Varieties [J]. Crops, 2024, 40(2): 228-233.
[8] Hu Haochi, Wang Fugui, Zhu Kongyan, Hu Shuping, Wang Meng, Wang Zhigang, Sun Jiying, Yu Xiaofang, Bao Haizhu, Gao Julin. Effects of Straw Returning Years and Phosphorus Application on Root Growth and Yield of Maize [J]. Crops, 2024, 40(2): 80-88.
[9] Qin Birong, You Saiya, Chen Shurong, Zhu Lianfeng, Kong Yali, Zhu Chunquan, Tian Wenhao, Zhang Junhua, Jin Qianyu, Cao Xiaochuang, Liu Li. Effects of the Different Nitrogen Levels on Yield, Nitrogen Utilization Efficiency and the Nitrogen Balance of Double-Cropping Rice in Paddy Field [J]. Crops, 2024, 40(2): 89-96.
[10] Luo Xiaoying, Fang Yanfei, Hu Dongping, Tang Jianghua, Xu Wenxiu, Wang Huaigang. Effects of Sowing Methods and Sowing Rates on Soil Water Use and Yield of Dryland Wheat in Arid Region [J]. Crops, 2024, 40(2): 97-104.
[11] Ji Ping, Liu Jinlong, Liu Hao, Kuang Jiali, Ye Shihe, Long Sha, Yang Hongtao, Peng Bo, Xu Chen, Liu Xiaolong. Effects of Heat Stress on Yield Components and Quality in Different Rice Varieties during Heading Stage [J]. Crops, 2024, 40(1): 117-125.
[12] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[13] Xiong Xin, Deng Jun, Shang Liyan, Sheng Tian, Ye Jiayu, Liu Zichen, Huang Liying, Zhang Yunbo. Effects of Nitrogen and Potassium Fertilizer Interaction on Yield and Radiation Use Efficiency of Hybrid Rice [J]. Crops, 2024, 40(1): 166-173.
[14] Shao Meihong, Zhu Defeng, Cheng Siming, Cheng Chu, Xu Qunying, Hu Chaoshui. Study on Seedling Quality and Yield of Machine Transplanting Early Rice with the Seedling Raising of Overlayed-Tray Emergence [J]. Crops, 2024, 40(1): 229-232.
[15] Xie Keran, Gao Ti, Cui Kehui. Research Progress of Potassium Fertilizer Controlling Rice Yield under High Temperature [J]. Crops, 2024, 40(1): 8-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!