Crops ›› 2024, Vol. 40 ›› Issue (6): 140-146.doi: 10.16035/j.issn.1001-7283.2024.06.019

Previous Articles     Next Articles

Effects of Salt Stress on Growth and Physiological Indexes of Oat

Li Feng1(), Gao Hongyun2(), Zhang Chong3, Zhang Baoying1, Ma Jianfu1, Guo Na1, Bai Wei1, Fang Aiguo1, Yang Zhimin1(), Li Yuan4()   

  1. 1Zhangjiakou Academy of Agricultural Sciences, Zhangjiakou 075000, Hebei, China
    2Shihezi Vocational and Technical College of Xinjiang, Shihezi 832003, Xinjiang, China
    3College of Animal Science and Technology, Southwest University, Chongqing 400715, China
    4Institute of Dry Farming, Hebei Academy of Agriculture and Forestry Sciences, Hengshui 053000, Hebei, China
  • Received:2023-07-27 Revised:2023-11-14 Online:2024-12-15 Published:2024-12-05

Abstract:

Salt-tolerant oat variety Zhangyan 7 (A) and salt-sensitive variety Bayou 18 (B) were used as experimental materials to study the effects of different salt stress treatments (control 0.0%, 0.2%, 0.4% and 0.6%) on the growth, photosynthetic physiological characteristics and the contents of phenolic substances in oat grains. The results showed that, with the increase of salt concentration, the emergence rate, plant height, dry weight per plant, fresh weight per plant and leaf water content of A and B decreased significantly. Under 0.2% salt concentration, the Pn, Ci, SOD and POD activities of the two varieties were significantly higher than those of the control. The SPAD and Tr of A and B were higher than control at 0.4% salt concentration. Under the treatment of 0.6% concentration salt, Ls reached the highest peak, and variety A was higher than B. When the salt concentration were 0.6% and 0.4%, the contents of total phenol and total flavonoid in seeds of varieties A and B reached the highest level, respectively. When the salt concentration was 0.6%, the antioxidant capacity of two varieties reached the highest. In summary, salt stress can affect plant growth, reduce photosynthetic indexes, and improve enzyme activity, phenolic substances and antioxidant capacity of oat. Moreover, salt stress had a greater inhibitory effect on salt-sensitive Bayou 18 than salt-tolerant variety Zhangyan 7.

Key words: Oat, Salt stress, Photosynthesis, Antioxidants, Phenolics, Physiological characteristics

Table 1

Effects of different salt concentrations on oat growth"

处理
Treatment
株高
Plant height (cm)
出苗率
Emergence rate (%)
单株干重
Dry weight per plant (g)
单株鲜重
Fresh weight per plant (g)
叶片相对含水量
RWC (%)
A0 84.53±1.70a 96.05±1.03a 1.58±0.05a 7.72±0.20a 75.06±6.01b
A1 74.43±1.22b 91.12±1.58b 1.25±0.05b 6.56±0.34b 88.32±2.23a
A2 62.51±1.40c 82.33±1.02c 0.93±0.07c 5.82±0.03c 68.44±2.58c
A3 52.45±1.05d 75.35±1.56d 0.62±0.01d 3.00±0.08d 27.07±2.77d
B0 79.11±2.65a 90.11±0.67a 1.28±0.05a 6.65±0.09a 82.88±2.30b
B1 68.75±2.42b 84.49±1.59b 1.09±0.05b 5.37±0.08b 92.09±2.04a
B2 58.55±2.11c 80.71±1.06c 0.73±0.02c 4.69±0.14c 76.65±2.87c
B3 52.78±1.09d 68.66±1.55d 0.52±0.01d 2.37±0.08d 23.37±3.08d

Fig.1

Effects of different salt concentrations on SPAD and photosynthetic indices Different lowercase letters indicate significant differences between treatments (P < 0.05), the same below."

Table 2

Effects of different salt concentrations on antioxidant enzyme activities and MDA contents in oat"

处理
Treatment
SOD活性
SOD activity [U/(min·g)]
POD活性
POD activity [U/(min·g)]
CAT活性
CAT activity [U/(min·g)]
MDA含量
MDA content (nmol/g)
A0 7928.33±44.88d 2.03±0.02b 2.88±0.02d 31.11±0.67c
A1 11 976.67±29.87a 2.63±0.14a 4.57±0.08c 31.41±0.60c
A2 9890.33±63.26b 1.64±0.14c 5.33±0.08b 33.95±0.06b
A3 9482.33±89.51c 0.99±0.02d 6.04±0.05a 36.84±0.05a
B0 7255.33±42.10d 1.68±0.18c 4.03±0.03d 53.55±0.69d
B1 7767.67±63.01c 2.56±0.08a 4.61±0.04c 61.26±1.01c
B2 8890.67±20.11a 2.05±0.05b 5.05±0.02b 78.51±0.86b
B3 8742.33±21.96b 1.20±0.08d 5.52±0.06a 87.07±1.48a

Fig.2

Effects of different salt concentrations on total phenols, total flavonoid and antioxidant capacity of oat"

Table 3

Effects of different salt concentrations on oat monomer phenols μg/100 g"

处理Treatment 香草酸Vanillic acid 咖啡酸Caffeic acid 对香豆酸P-coumaric acid 阿魏酸Ferulic acid 芦丁Rutin
A0 44.23±2.35c 36.28±0.67c 24.90±0.18c 18.36±1.14c 69.23±1.52d
A1 45.23±1.94c 41.05±1.12b 29.77±1.97b 15.31±0.20d 113.96±3.02c
A2 75.97±3.47b 33.05±0.36d 36.31±0.18a 35.58±0.86b 180.97±3.97b
A3 164.85±3.31a 47.28±0.57a 36.91±2.92a 68.24±0.44a 298.03±5.09a
B0 57.80±1.15c 25.51±1.36d 28.85±1.30c 15.66±0.65d 110.71±10.18d
B1 65.96±0.77b 41.85±0.46c 29.84±1.66c 31.63±2.04c 196.77±3.59c
B2 112.75±1.66a 43.55±0.84b 34.88±0.45b 52.45±2.47b 381.62±7.55b
B3 49.55±1.35d 75.39±0.63a 45.53±1.02a 99.38±1.40a 433.64±1.94a
[1] 赵凤云, 郭善利, 王增兰, 等. 耐盐转基因植物研究进展. 植物生理与分子生物学学报, 2003, 29(3):171-178.
[2] 张建锋, 张旭东, 周金星, 等. 世界盐碱地资源及其改良利用的基本措施. 水土保持研究, 2005(6):32-34,111.
[3] 王智颖. 松嫩平原盐碱地分布及空间变化研究. 哈尔滨:哈尔滨师范大学, 2020.
[4] 付珊, 雷婷, 金苇, 等. 盐胁迫对番茄幼苗生长及生理指标的影响. 湖北师范大学学报(自然科学版), 2023, 43(3):9-15.
[5] Giuseppe C, Salvatore C, Mariano F, et al. Salinity differentially affects growth and ecophysiology of two mastic tree (Pistacia lentiscus L.) accessions. Forests, 2016, 7(8):156.
[6] Liu L, Wang B. Protection of halophytes and their uses for cultivation of saline-alkali soil in China. Biology, 2021, 10(5):353-353.
[7] Jia X M, Zhu Y F, Hu Y, et al. Integrated physiologic,proteomic,and metabolomic analyses of Malus halliana adaptation to saline-alkali stress. Horticulture Research, 2019, 6(1):1-19.
[8] Fricke W. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. Journal of Experimental Botany, 2004, 55(399):1115-1123.
pmid: 15047763
[9] Bai J H, Liu J H, Jiao W H, et al. Proteomic analysis of salt-responsive proteins in oat roots (Avena sativa L.). Journal of the Science of Food and Agriculture, 2016, 96(11):3867-3875.
[10] 王波, 宋凤斌. 燕麦对盐碱胁迫的反应和适应性. 生态环境, 2006(3):625-629.
[11] Bekele W A, Wight C P, Chao S, et al. Haplotype-based genotyping-by-sequencing in oat genome research. Plant Biotechnology Journal, 2018, 16(8):1452-1463.
doi: 10.1111/pbi.12888 pmid: 29345800
[12] Han L, Eneji A E, Steinberger Y, et al. Comparative biomass production of six oat varieties in a saline soil ecology. Communications in Soil Science and Plant Analysis, 2014, 45(19):2552-2564.
[13] Gutierrez-Gonzalez J J, Garvin D F. Subgenome-specific assembly of vitamin E biosynthesis genes and expression patterns during seed development provide insight into the evolution of oat genome. Plant Biotechnology Journal, 2016, 14(11):2147-2157.
doi: 10.1111/pbi.12571 pmid: 27135276
[14] 梁茜茜. 燕麦麸多糖超声微波协同提取工艺优化及对高脂血大鼠的降脂作用研究. 大庆:黑龙江八一农垦大学, 2017.
[15] 王波, 张金才, 宋凤斌, 等. 盐碱胁迫对燕麦光合特性的影响. 中国农学通报, 2007(5):235-238.
[16] 武俊英, 刘景辉, 李倩. 盐胁迫对燕麦幼苗生长K+、Na+吸收和光合性能的影响. 西北农业学报, 2010, 19(2):100-105.
[17] Goyal M, Asthir B. Polyamine catabolism influences antioxidative defense mechanism in shoots and roots of five wheat genotypes under high temperature stress. Plant Growth Regulation, 2010, 60(1):13-25.
[18] 张古文, 朱月林, 刘正鲁, 等. Ca(NO3)2胁迫对嫁接番茄生长、抗氧化酶活性和活性氧代谢的影响. 植物营养与肥料学报, 2008(3):527-532.
[19] 刘芳, 付艳, 高树仁, 等. 玉米幼苗的盐胁迫反应及玉米耐盐性的鉴定. 黑龙江八一农垦大学学报, 2007, 19(6):22-26.
[20] 张治安, 陈展宇. 植物生理学实验技术. 长春: 吉林大学出版社, 2000.
[21] Hossain M A, Rahman S M M. Total phenolics,flavonoids and antioxidant activity of tropical fruit pineapple. Food Research International, 2011, 44(3):672-676.
[22] Thaipong K, Boonprakob U, Crosby K, et al. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis, 2012, 19(6/7):669-675.
[23] 蔡天革, 王鹏, 唐凤德. 盐胁迫对燕麦种子萌发和幼苗抗氧化酶的影响. 辽宁大学学报(自然科学版), 2016, 43(1):74-78.
[24] Zhang X Q, Lu Z Y, Cheng Y C, et al. Effects of mixed salt stress on germination percentage and protection system of oat seedling. Advance Journal of Food Science and Technology, 2013, 5(2):197-205.
[25] Foolad M R, Lin G Y, Quaslet C O. Relationships between cold- and salt-tolerance during seed germination in tomato: germplasm evaluation. Plant Breeding, 2010, 118(1):45-48.
[26] 徐正辉. 萌发期燕麦对不同梯度盐胁迫的响应. 中国草食动物科学, 2020, 40(3):36-39.
[27] 王旭明, 赵夏夏, 周鸿凯, 等. NaCl胁迫对不同耐盐性水稻某些生理特性和光合特性的影响. 热带作物学报, 2019, 40(5):882-890.
doi: 10.3969/j.issn.1000-2561.2019.05.008
[28] Sapre S, Gontia-Mishra I, Tiwari S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research, 2018, 206:25-32.
[29] 王苗苗, 赵桂琴, 梁国玲, 等. 不同耐盐性燕麦对盐胁迫的生理响应. 草业科学, 2021, 38(11):2200-2209.
[30] 孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响. 中国农业科学, 2012, 45(16):3265-3272.
doi: 10.3864/j.issn.0578-1752.2012.16.005
[31] 孙文越, 王辉, 黄久常. 外源甜菜碱对干旱胁迫下小麦幼苗膜脂过氧化作用的影响. 西北植物学报, 2001, 21(3):487-491.
[32] Wu B, Munkhtuya Y, Li J J, et al. Comparative transcriptional profiling and physiological responses of two contrasting oat genotypes under salt stress. Scientific Reports, 2018, 8(1):16248.
doi: 10.1038/s41598-018-34505-5 pmid: 30389990
[33] 曹慧, 王孝威, 韩振海, 等. 水分胁迫诱导平邑甜茶叶片衰老期间内肽酶与活性氧累积的关系. 中国农业科学, 2004, 37 (2):274-279.
[34] 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9):1797-1804.
[35] 汤春芳, 刘云国, 曾光明, 等. 镉胁迫对萝卜幼苗活性氧产生、脂质过氧化和抗氧化酶活性的影响. 植物生理与分子生物学学报, 2004, 30(4):469-474.
[36] 刘凤歧, 刘杰淋, 朱瑞芬, 等. 4种燕麦对NaCl胁迫的生理响应及耐盐性评价. 草业学报, 2015, 24(1):183-189.
doi: 10.11686/cyxb20150122
[37] Varga M, Jójárt R, Fónad P, et al. Phenolic composition and antioxidant activity of colored oats. Food Chemistry, 2018, 268:153-161.
doi: S0308-8146(18)31006-9 pmid: 30064743
[38] 邓佳琪, 李娟娟, 贺馨怡, 等. 光照处理对发芽燕麦中多酚类物质含量及抗氧化活性的影响. 西北农林科技大学学报(自然科学版), 2021, 49(10):120-128.
[1] Li Fei, Bian Shaofeng, Xu Chen, Zhao Hongxiang, Song Hanglin, Wang Fuchen, Zhuang Yan. Effects of Ridge Side Cultivation on Maize Physiological Characteristics, Growth and Development in Sloping Farmland [J]. Crops, 2024, 40(6): 120-125.
[2] Li Xiaoting, Zhang Tingting, Zhang Yanli, Li Zhiwei, Han Li, Zhao Xinyao, Zhang Yongping, Li Lijun. Diversity Analysis and Function Study of Culturable Endophytic Fungi in Oat Shoot [J]. Crops, 2024, 40(6): 194-204.
[3] E Lifeng, Xu Jinchong, Chen Xiubin, Quan Jianhua, Hua Jun, Yin Lijuan, Wang Shunqi, Zhao Wenqin. Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress [J]. Crops, 2024, 40(6): 212-217.
[4] Xiao Xiao, Zhong Kunquan, Tu Xiaoju, Yi Zhenxie. Effects of Low Temperature Acclimation Duration on Cold Tolerance Physiological Characteristics in Vegetable Sweet Potato Seedlings [J]. Crops, 2024, 40(5): 140-145.
[5] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[6] Wang Wenxia, Chang Bokai, Xia Qing, Zhi Hui, Du Jie. Effects of Foliar Spraying Selenium on Physiological Characteristics, Yield and Quality of Flax [J]. Crops, 2024, 40(4): 130-137.
[7] Fan Yu, Feng Liang, Wang Junzhen, Yang Qiaohui, Ren Yuanhang, Zhang Kaixuan, Zou Liang, Zhou Meiliang, Xiang Dabing. Nutritional Composition Analysis of Different Oats Varieties [J]. Crops, 2024, 40(4): 71-81.
[8] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[9] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[10] He Jiamin, Zhang Yongqing, Zhang Meng, Liang Ping, Wang Dan, Yan Fanfan. Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress [J]. Crops, 2024, 40(2): 234-241.
[11] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[12] Wang Xiaolei, Zhang Yunhe, Mu Jinmeng, Gao Dapeng, Geng Yanqiu, Cao Yiwen, Lu Fen, Guan Zhengwen, Shao Xiwen, Guo Liying. Effects of Soda and Saline-Alkali Stress on Photosynthetic Characteristics and Yield of Rice [J]. Crops, 2024, 40(1): 193-203.
[13] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[14] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[15] Xiu Junjie, Liu Xueliang. Effects of Water and Nitrogen Interaction on Physiological Characteristics and Growth of Peanut during the Pod-Pin Stage [J]. Crops, 2023, 39(6): 174-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!