Crops ›› 2025, Vol. 41 ›› Issue (2): 196-206.doi: 10.16035/j.issn.1001-7283.2025.02.027

Previous Articles     Next Articles

Effect of Foliar Application of Selenium onNutritional Quality of Oat Grain

Zhang Lina1(), Yang Wenping2, Su Miao1, Zhang Zhixuan1, Li Junhui1, Aamir Ali1, Chen Jie1, Gao Zhiqiang1, Yang Zhenping1()   

  1. 1College of Agriculture, Shanxi Agricultural University / Collaborative Innovation Center for High-Quality and Efficient Production of Characteristic Crops on the Loess Plateau, Jointly Built by the Province and the Ministry, Jinzhong 030801, Shanxi, China
    2School of Life Sciences, North China University of Technology, Tangshan 063210, Hebei, China
  • Received:2023-12-11 Revised:2024-01-30 Online:2025-04-15 Published:2025-04-16

Abstract:

In order to explore the effects of foliar selenium (Se) application on selenium accumulation and nutritional quality in oat grains, a field experiment was conducted using three oat varieties (Bayou 6, Bayou 12, and Baiyan 2). At the flowering stage, selenium nutrient solution (SeO32-) with different concentrations (Se1: 12 g/ha, Se2: 36 g/ha) were sprayed on the leaves, and selenium-free was used as control (CK). The selenium content in grains at grain-filling stage and the nutritional quality (amino acids and fatty acids) at maturity stage were determined. The findings demonstrated that the selenium concentration in oat grains first increased and then decreased with the extension of the filling period. Specifically, at maturity stage, selenium contents of all selenium-treated treatments was within the national standard range of 0.10-0.30 mg/kg, which was significantly higher than that of the CK. The highest selenium content (0.16 mg/kg) was observed under the Se2 treatment. Compared with the CK, selenium application significantly increased the total amino acid content in oat grains of all three varieties: the content in the low amino acid variety 'Bayou 6' increased by 2.13%-10.53%, while the content in the high amino acid variety 'Baiyan 2' increased by 7.44%-9.37%. Compared with the CK, selenium application increased the content of different fatty acids in grains of the three oat varieties. The influences of variety type, selenium fertilizer concentration, and their interaction effect all reached a very significant level (P < 0.01). Foliar selenium spraying can significantly promote the accumulation of selenium and enhance the contents of amino acids and unsaturated fatty acids in oat grains, the effect of the Se2 treatment is better.

Key words: Oat, Selenium fertilizer, Nutritional quality, Amino acid, Fatty acid

Fig.1

Rainfall and average temperature from April to October in 2021"

Fig.2

The dynamics of selenium accumulation in grains of oat at filling stage under foliar selenium spraying Ov means oat variety, Se means foliar selenium treatment, Ov×Se signify interaction between oat varieties and foliar selenium. Different lowercase letters indicate significant difference at P < 0.05 level among different treatments under the same variety; Different capital letters indicate that the difference between different varieties under the same treatment at P < 0.05 level.“*”,“**”,“***”and“ns”indicate P < 0.05, P < 0.01, P < 0.001 and P > 0.05, respectively. The same below."

Table 1

Essential and total amino acid contents in grains of oat at maturity stage under foliar selenium spraying mg/g"

氨基酸
Amino acid
品种
Variety
硒肥浓度Se concentration FF-value
CK Se1 Se2 均值Mean 品种Ov 硒肥Se 品种×硒肥Ov×Se
总氨基酸TAA 坝莜6号 109.16cC 111.48bC 120.66aB 113.77 *** *** ***
坝莜12号 115.20bB 116.87aB 117.60aC 116.56
白燕2号 122.35cA 131.45bA 133.81aA 129.20
异亮氨酸Ile 坝莜6号 13.46bA 13.49bA 15.35aA 14.10 ** ** ns
坝莜12号 12.88aA 13.50aA 13.74aB 13.37
白燕2号 14.06aA 14.72aA 15.15aA 14.64
甲硫氨酸Met 坝莜6号 11.36cA 11.79bA 12.73aA 11.96 ns * ns
坝莜12号 12.11aA 12.55aA 13.18aA 12.61
白燕2号 11.36aA 11.98aA 12.66aA 12.00
亮氨酸Leu 坝莜6号 9.87bC 9.95bB 11.63aB 10.48 *** *** ***
坝莜12号 10.50aB 10.57aB 10.79aC 10.62
白燕2号 11.39bA 12.78aA 13.50aA 12.56
缬氨酸Val 坝莜6号 9.78aA 9.92aA 10.44aA 10.05 * ns ns
坝莜12号 9.98aA 10.00aA 10.17aA 10.05
白燕2号 10.12aA 10.57aA 11.43aA 10.71
苯丙氨酸Phe 坝莜6号 4.73cB 5.20bC 5.58aB 5.17 *** *** ns
坝莜12号 5.70bA 6.09aB 6.25aA 6.01
白燕2号 5.91bA 6.40aA 6.56aA 6.29
赖氨酸Lys 坝莜6号 3.94bB 4.15abC 4.39aB 4.16 *** *** ns
坝莜12号 4.29bA 4.55aB 4.58aB 4.47
白燕2号 4.60bA 4.92aA 5.01aA 4.84
苏氨酸Thr 坝莜6号 3.43aB 3.45aB 3.61aB 3.50 *** *** ns
坝莜12号 3.73aA 3.95aA 3.99aAB 3.89
白燕2号 3.66bA 4.24aA 4.34aA 4.08

Table 2

Non-essential amino acid contents in grains of oat at maturity stage under foliar selenium spraying mg/g"

氨基酸
Amino acid
品种
Variety
硒肥浓度Se concentration FF-value
CK Se1 Se2 均值Mean 品种Ov 硒肥Se 品种×硒肥Ov×Se
谷氨酸Glu 坝莜6号 16.20cB 17.71bC 18.79aC 17.57 *** *** ***
坝莜12号 20.03aA 20.30aB 20.51aB 20.28
白燕2号 20.20bA 22.03aA 22.10aA 21.44
天冬氨酸Asp 坝莜6号 7.68cC 8.04bC 8.42aC 8.05 *** *** ns
坝莜12号 8.36bB 8.66abB 8.90aB 8.64
白燕2号 9.16bA 9.26bA 9.67aA 9.36
精氨酸Arg 坝莜6号 6.05bB 6.11bB 6.87aB 6.34 *** ** ns
坝莜12号 3.06bC 3.23bC 4.05aC 3.45
白燕2号 7.69aA 7.90aA 8.09aA 7.89
酪氨酸Tyr 坝莜6号 4.18bC 4.36bB 4.98aA 4.51 *** *** ns
坝莜12号 4.46bB 4.61bB 5.09aA 4.72
白燕2号 5.02bA 5.24abA 5.57aA 5.28
甘氨酸Gly 坝莜6号 4.18bB 4.25bC 4.53aC 4.32 *** *** ***
坝莜12号 4.64aA 4.68aB 4.76aB 4.69
白燕2号 4.56bA 5.12aA 5.25aA 4.98
丝氨酸Ser 坝莜6号 4.21aB 4.31aB 4.35aC 4.29 *** *** ***
坝莜12号 4.67aA 4.79aA 4.82aB 4.76
白燕2号 4.17cB 4.96bA 5.27aA 4.80
丙氨酸Ala 坝莜6号 3.56bC 3.73abB 3.91aB 3.73 *** *** ns
坝莜12号 3.85aB 3.98aB 4.08aB 3.97
白燕2号 4.19bA 4.65aA 4.65aA 4.50
胱氨酸Cys 坝莜6号 2.68aA 2.88aA 2.99aA 2.85 ns ** ns
坝莜12号 2.53aA 2.59aB 2.85aA 2.66
白燕2号 2.75bA 2.80bAB 3.08aA 2.88
组氨酸His 坝莜6号 2.44bB 2.80abB 2.87aB 2.70 *** *** ns
坝莜12号 2.61aAB 2.61aC 2.64aC 2.62
白燕2号 2.82bA 2.97aA 3.08aA 2.96

Table 3

Comparison of contents of essential amino acids of oats in different treatments with the FAO/WHO amino acid model and the ideal protein standard"

品种
Variety
处理
Treatment
氨基酸类型Amino acid type (mg/g) 理想蛋白标准Ideal protein standard
Ile Leu Lys Met+Cys Phe+Tyr Thr Val E/T E/N
FAO/WHO标准模式 4.00 7.00 5.50 3.50 6.00 4.00 5.00 40 60
坝莜6号 CK 3.37bA 1.41bC 0.72bB 4.01cA 1.49cC 0.86aA 1.96aA 52aA 111aA
Se1 3.37bA 1.42bB 0.75abC 4.19bA 1.59bC 0.86aB 1.98aA 52aA 107aB
Se2 3.84aA 1.66aB 0.80aB 4.49aA 1.76aB 0.90aB 2.09aA 53aA 110aA
坝莜12号 CK 3.22aA 1.50aB 0.78bA 4.18aA 1.69cB 0.93aA 2.00aA 51aAB 109aA
Se1 3.38aA 1.51aB 0.83aB 4.33aA 1.78bB 0.99aA 2.00aA 52aA 109aA
Se2 3.43aB 1.54aC 0.83aB 4.58aA 1.89aAB 1.00aAB 2.03aA 53aA 110aA
白燕2号 CK 3.52aA 1.63bA 0.84bA 4.03bA 1.82bA 0.91bA 2.02aA 50aB 101aB
Se1 3.68aA 1.83aA 0.90aA 4.22abA 1.94abA 1.06aA 2.11aA 50aB 101aC
Se2 3.79aA 1.93aA 0.91aA 4.50aA 2.02aA 1.09aA 2.29aA 51aA 103aB

Table 4

Comparison of RC, SRC, and EAAI of essential amino acids in oat varieties under different treatments"

品种
Variety
处理
Treatment
RC SRC EAAI
Lys Thr Leu Val Ile Met+Cys Phe+Tyr
坝莜6号 CK 0.36bB 0.44aA 0.71bB 0.99bA 1.71aA 2.03cB 0.75bC 40.99bC 0.83cB
Se1 0.38aB 0.44aB 0.72bB 1.01bB 1.67bA 2.12bB 0.81aC 41.26abC 0.85bB
Se2 0.40aB 0.46aB 0.84aB 1.06aB 1.73aA 2.28aB 0.89aB 42.33aB 0.93aB
坝莜12号 CK 0.40aA 0.47bA 0.76aB 1.01aA 1.58aC 2.12bA 0.86bB 44.21aB 0.87bB
Se1 0.42aA 0.50aA 0.77aB 1.01aB 1.60aA 2.19bA 0.90bB 44.47aB 0.91aA
Se2 0.42aB 0.51aA 0.78aC 1.03aB 1.57aC 2.32aA 0.96aB 43.28aB 0.93aB
白燕2号 CK 0.42bA 0.46bA 0.83bA 1.03bA 1.67aB 2.04cB 0.92bA 47.14bA 0.91cA
Se1 0.45aA 0.54aA 0.93aA 1.07bA 1.64aA 2.14bB 0.98aA 49.96aA 0.98bA
Se2 0.46aA 0.55aA 0.98aA 1.16aA 1.61bB 2.28aB 1.03aA 49.53aA 1.02aA

Table 5

Effects of foliar selenium spraying the fatty acid contents in oat grains at maturity stage %"

指标
Index
品种
Variety
处理Treatment FF-value
CK Se1 Se2 平均值Mean 品种Ov 硒肥Se 品种×硒肥Ov×Se
脂肪Fat 坝莜6号 4.32cC 4.55bC 4.83aC 4.57 *** *** ***
坝莜12号 6.81cB 6.97bB 7.19aB 6.99
白燕2号 7.62cA 8.09bA 8.17aA 7.96
油酸Oleic acid 坝莜6号 39.23bC 39.26bC 39.37aC 39.29 *** *** ***
坝莜12号 39.66cB 40.00bA 40.36aB 40.01
白燕2号 39.84bA 39.86bB 41.15aA 40.28
亚油酸Linoleic acid 坝莜6号 34.25bC 34.43aC 34.57aC 34.42 *** *** ***
坝莜12号 36.10cA 36.23bB 36.96aB 36.43
白燕2号 35.64cB 37.31bA 37.46aA 36.80
棕榈酸Palmitic acid 坝莜6号 15.62bA 15.69abA 15.88aA 15.73 *** *** ***
坝莜12号 12.94cC 14.43bB 15.45aB 14.27
白燕2号 14.82bB 14.95bB 15.91aA 15.23
硬脂酸Stearic acid 坝莜6号 1.27cC 1.68bC 2.19aB 1.71 *** *** ***
坝莜12号 1.87cA 2.00bB 2.16aB 2.01
白燕2号 1.80bB 2.51aA 2.55aA 2.29
亚油酸Linoleic acid 坝莜6号 0.41cC 0.52bC 0.63aC 0.52 *** *** **
坝莜12号 0.63bB 0.75abB 0.87aB 0.75
白燕2号 1.10cA 1.26bA 1.61aA 1.32

Fig.3

Analysis of strengthening effects of foliar selenium spraying on amino acids and fatty acids of oat grains(a) and (b): the correlation and path analysis of amino acids and fatty acids in grains by foliar selenium, respectively; (c) and (d): correlation analysis of essential and non-essential amino acids and fatty acids in grains. SeIG: selenium content in oat grains at maturity stage; TAA: total amino acids; EAA: essential amino acid; NEE: non-essential amino acid."

Table 6

Fitting index of path analysis model"

模型
Model
X2 df P
P-value
卡方
自由度比
Chi-square/df
拟合优
度指数
GFI
近似误差
均方根
RMSEA
均方根残差
RMSR
比较
拟合指数
CFI
规范
拟合系数
NFI
非规范
拟合系数
NNFI
必需氨基酸EAA 15.448 6 0.017** 2.575 0.935 0.444 0.002548 0.948 0.935 0.526
非必需氨基酸NAA 9.203 6 0.042* 1.534 0.969 0.258 0.002464 0.986 0.969 0.812

Table 7

Regression coefficient of the path analysis model"

模型
Model
X→Y 非标准化系数
USC
标准化系数
SC
标准误
SE
临界比值
CR
P
P-value
必需氨基酸EAA 缬氨酸→油酸 1.493 1.229 0.458 3.258 0.001***
异亮氨酸→亚油酸 -0.592 -0.404 0.252 -2.347 0.019**
苏氨酸→亚油酸 2.183 0.577 0.732 2.982 0.003***
蛋氨酸→硬脂酸 0.243 0.379 0.119 2.043 0.041**
蛋氨酸→亚麻酸 -0.218 -0.354 0.092 -2.381 0.017**
缬氨酸→亚麻酸 0.459 0.589 0.164 2.801 0.005***
非必需氨基酸NAA 天冬氨酸→油酸 1.465 1.515 0.383 3.830 0.000***
丝氨酸→油酸 1.201 0.745 0.612 1.962 0.050**
天冬氨酸→硬脂酸 -0.491 -0.763 0.187 -2.631 0.009***
天冬氨酸→亚麻酸 0.561 0.904 0.159 3.521 0.000***

Table 8

Path analysis node covariance relationship"

模型
Model
X?Y 非标准化估计系数
USEC
标准化估计系数
SEC
标准误
SE
z检验值
z-test value
P
P-value
必需氨基酸EAA 苯丙氨酸?赖氨酸 0.171 0.949 0.083 2.065 0.039**
苯丙氨酸?苏氨酸 0.159 0.926 0.078 2.038 0.042**
亮氨酸?赖氨酸 0.342 0.895 0.171 2.001 0.045**
亮氨酸?缬氨酸 0.518 0.933 0.253 2.046 0.041**
赖氨酸?苏氨酸 0.093 0.920 0.046 2.031 0.042**
非必需氨基酸AA 丝氨酸?甘氨酸 0.106 0.898 0.053 2.004 0.045**
丙氨酸?谷氨酸 0.586 0.903 0.291 2.011 0.044**
丙氨酸?甘氨酸 0.111 0.935 0.054 2.049 0.040**
丙氨酸?天冬氨酸 0.200 0.943 0.097 2.058 0.040**
丙氨酸?酪氨酸 0.140 0.906 0.070 2.015 0.044**
谷氨酸?甘氨酸 0.567 0.941 0.276 2.056 0.040**
谷氨酸?天冬氨酸 0.996 0.925 0.489 2.038 0.042**
甘氨酸?天冬氨酸 0.178 0.899 0.089 2.005 0.045**
天冬氨酸?酪氨酸 0.239 0.928 0.117 2.041 0.041**
[1] Dumont E, Vanhaecke F, Cornelis R. Selenium speciation from food source to metabolites: a critical review. Analytical and Bioanalytical Chemistry, 2006, 385(7):1304-1323.
pmid: 16830114
[2] Jones G D, Droz B, Greve P, et al. Selenium deficiency risk predicted to increase under future climate change. Proceedings of the National Academy of Sciences, 2017, 114(11):2848-2853.
[3] Williame P N, Lombi E, Sun G, et al. Selenium characterization in the global rice supply chain. Environmental Science & Technology, 2009, 43(15):6024-6030.
[4] 尹雪斌, 赵其国, 印遇龙, 等. 功能农业关键科学问题研究进展与“十四五”发展建议. 科学通报, 2022, 67(6):497-510.
[5] Schiavon M, Nardi S, Dalla Vecchia F, et al. Selenium biofortification in the 21st century: status and challenges for healthy human nutrition. Plant and Soil, 2020,453:245-270.
[6] Kaur S, Bhardwaj R D, Kapoor R, et al. Biochemical characterization of oat (Avena sativa L.) genotypes with high nutritional potential. LWT-Food Science and Technology, 2019,110:32-39.
[7] Mushtaq A, Gul-Zaffar Z. A D, et al. A review on Oat (Avena sativa L.) as a dual-purpose crop. Scientific Research and Essays, 2014, 9(4):52-59.
[8] Singh M, Kumar S. Broadening the Genetic Base of Grain Cereals. New Delhi: Springer (India) Private Limited, 2016.
[9] Lyons G, Stangoulis J, Graham R. High-selenium wheat: biofortification for better health. Nutrition Research Reviews, 2003, 16(1):45-60.
doi: 10.1079/NRR200255 pmid: 19079936
[10] 汤超华, 赵青余, 张凯, 等. 富硒农产品研究开发助力我国营养型农业发展. 中国农业科学, 2019, 52(18):3122-3133.
doi: 10.3864/j.issn.0578-1752.2019.18.005
[11] Winkel L, Vriens B, Jones G, et al. Selenium cycling across soil-plant-atmosphere interfaces: A critical review. Nutrients, 2015, 7(6):4199-4239.
doi: 10.3390/nu7064199 pmid: 26035246
[12] Winkel L H E, Johnson C A, Lenz M, et al. Environmental selenium research: from microscopic processes to global understanding. Environmental Science & Technology, 2012, 46 (2):571-579.
[13] Ros G H, Rotterdam A M D, Bussink D W, et al. Selenium fertilization strategies for bio-fortification of food: an agro- ecosystem approach. Plant and Soil, 2016,404:99-112.
[14] 李越, 宁丹, 吕玉峰, 等. 抽穗期叶面喷硒对燕麦品种硒积累影响及品种综合性状评价. 作物杂志, 2023(4):1-11.
[15] 王敏. 燕麦种质资源主要微量元素含量的多样性及硒富集效应研究. 呼和浩特: 内蒙古农业大学, 2020.
[16] 张新军, 杨才, 曾昭海, 等. 叶面喷施硒肥对裸燕麦产量和品质的影响. 麦类作物学报, 2015, 35(3):408-412.
[17] 孙发宇, 李长成, 王安, 等. 叶面喷施硒酸钠对不同小麦品种(系)籽粒硒及其他矿质元素含量的影响. 麦类作物学报, 2017, 37(4):559-564.
[18] Hao S N, Liu P F, Qin J, et al. Effects of applying different doses of selenite to soil and foliar at different growth stage on selenium content and yield of different oat varieties. Plants, 2022, 11(14):1810.
[19] Delaqua D, Carnier R, Berton R S, et al. Increase of selenium concentration in wheat grains through foliar application of sodium selenate. Journal of Food Composition and Analysis, 2021,99:103886.
[20] Yuan Z Q, Long W X, Liang T, et al. Effect of foliar spraying of organic and inorganic selenium fertilizers during different growth stages on selenium accumulation and speciation in rice. Plant and Soil, 2023,486:87-101.
[21] 穆婷婷, 杜慧玲, 张福耀, 等. 外源硒对谷子生理特性、硒含量及其产量和品质的影响. 中国农业科学, 2017, 50(1):51-63.
doi: 10.3864/j.issn.0578-1752.2017.01.005
[22] 托列霍加·加吾提, 吾买尔夏提·塔汉, 隋晓青. 20份糜子材料的氨基酸含量分析及营养价值评价. 种子, 2020, 39(7):31-36.
[23] 王超群. 基于脂肪酸组成对燕麦—小麦复配粉中燕麦粉的定量分析. 无锡: 江南大学, 2016.
[24] 张联合, 赵巍, 郁飞燕, 等. 水稻离体叶片吸收亚硒酸盐的生理特性. 土壤学报, 2012, 49(1):189-193.
[25] 曹昌林, 吕慧卿, 郝志萍, 等. 外源硒对‘晋苦荞5号’光合特性、籽粒硒积累和产量及品质的影响. 中国土壤与肥料, 2021(3):207-213.
[26] Yue J X, Gu Z X, Zhu Z B, et al. Impact of defatting treatment and oat varieties on structural, functional properties, and aromatic profile of oat protein. Food Hydrocolloids, 2021,112:106368.
[27] Hu Z, Cheng Y, Suzuki N, et al. Speciation of selenium in brown rice fertilized with selenite and effects of selenium fertilization on rice proteins. International Journal of Molecular Sciences, 2018, 19(11):3494.
[28] Liang K H, Liang S, Zhu H. Comparative proteomics analysis of the effect of selenium treatment on the quality of foxtail millet. LWT, 2020,131:109691.
[29] Bielecka M, Watanabe M, Morcuende R, et al. Transcriptome and metabolome analysis of plant sulfate starvation and resupply provides novel information on transcriptional regulation of metabolism associated with sulfur, nitrogen, and phosphorus nutritional responses in arabidopsis. Frontiers in Plant Science, 2015,5:805.
[30] Harris J, Schneberg K A, Pilon-Smits E A. Sulfur-selenium- molybdenum interactions distinguish selenium hyperaccumulator stanleya pinnata from non-hyperaccumulator Brassica Juncea (Brassicaceae). Plant, 2014, 239(2):479-491.
[31] 相玉婷, 王晓龙, 胡新中, 等. 燕麦品种间脂肪酶活性差异及低脂肪酶优质品种的预测. 中国农业科学, 2022, 55(21):4104-4117.
doi: 10.3864/j.issn.0578-1752.2022.21.002
[32] Liu M X, Zhang Z W, Ren G X, et al. Evaluation of selenium and carotenoid concentrations of 200 foxtail millet accessions from china and their correlations with agronomic performance. Journal of Integrative Agriculture, 2016, 15(7):1449-1457.
[33] Wang Y D, Wang X, Ngai S M, et al. Comparative proteomics analysis of selenium responses in selenium-enriched rice grains. Journal of Proteome Research, 2013, 12(2):808-820.
[1] Luo Jianke, Zhang Kehou, Wang Zeyu, Zhang Pingzhen, Nan Ming. Research on the Production Performance of 18 Oat Varieties (Lines) in the Irrigation Area along the Yellow River in Baiyin City [J]. Crops, 2025, 41(2): 93-100.
[2] Li Feng, Gao Hongyun, Zhang Chong, Zhang Baoying, Ma Jianfu, Guo Na, Bai Wei, Fang Aiguo, Yang Zhimin, Li Yuan. Effects of Salt Stress on Growth and Physiological Indexes of Oat [J]. Crops, 2024, 40(6): 140-146.
[3] Li Xiaoting, Zhang Tingting, Zhang Yanli, Li Zhiwei, Han Li, Zhao Xinyao, Zhang Yongping, Li Lijun. Diversity Analysis and Function Study of Culturable Endophytic Fungi in Oat Shoot [J]. Crops, 2024, 40(6): 194-204.
[4] Ma Lina, Wei Yuming, Wen Lifang, Zhang Xuejian, Yang Zhao, Huang Jie, Zhang Shengchang, Li Xiaoyu, Liu Huan, Yang Farong. Analysis of Agronomic Traits and Nutritional Quality of 22 Quinoa Germplasms in Yuanmou Area of Yunnan Province [J]. Crops, 2024, 40(6): 47-54.
[5] Fan Yu, Feng Liang, Wang Junzhen, Yang Qiaohui, Ren Yuanhang, Zhang Kaixuan, Zou Liang, Zhou Meiliang, Xiang Dabing. Nutritional Composition Analysis of Different Oats Varieties [J]. Crops, 2024, 40(4): 71-81.
[6] Sun Yueying, Liu Jinghui, Mi Junzhen, Zhao Baoping, Li Yinghao, Zhu Shanshan. Study on the Growth-Promoting Effect of Lactic Acid Bacteria Compound Preparation on Oat [J]. Crops, 2024, 40(2): 122-128.
[7] Liu Fanchao, Fang Shumei, Wang Qingyan, Wang Hanxin, Niu Juanjuan, Liang Xilong. Effects of Different Concentrations of Exogenous Amino Acids on Growth and Related Physiological Indicators of Rice Seedlings [J]. Crops, 2024, 40(2): 71-79.
[8] Zhou Zhenlei, Liu Jianming, Cao Dong, Liu Baolong, Wang Dongxia, Zhang Huaigang. Comparison of Grass Yield, Agronomic Traits and Forage Quality of Different Oat Varieties [J]. Crops, 2024, 40(1): 132-140.
[9] Zhang Lu, Li Dengming, Zhai Xiaoyu, Wu Junying, Gao Shihua, Zhao Yufei. Differences in Agronomic and Quality Traits of Oat at Cutting Time and Their Relationships with Regeneration Performance [J]. Crops, 2024, 40(1): 220-228.
[10] Zhou Qilong. Screening of Suitable Mixed Sowing Methods for Annual Forage Crops in Rikaze Alpine Valley Region [J]. Crops, 2023, 39(6): 209-217.
[11] Li Yue, Ning Dan, Lü Yufeng, Zhang Bin, Xue Zhiqiang, Jia Juqing, Feng Meichen, Song Xiaoyan, Zhang Meijun, Yang Wude. Effects of Foliar Spraying Selenium on Selenium Accumulation of Oat Varieties and Evaluation of Their Comprehensive Traits [J]. Crops, 2023, 39(4): 215-223.
[12] Jia Guotao, Wang Xiaoyu, Sun Yiming, Nie Cong, He Jingyu, Feng Yingjie, Ma Shengtao, Cui Ting, Cheng Dongxu, Yao Qian, Li Yue, Zhang Ziying, Wang Baolin, Liu Huimin. Analysis on the Relationship between Contents of Free Amino Acids and the Quality of Flue-Cured Tobacco in Eight Flavor Ecological Regions of China [J]. Crops, 2023, 39(3): 195-199.
[13] Wang Yandan, Gao Xin, Peng Jinjian, Tang Feiyu. Comparison of Carbohydrate and Nitrogen Contents in Vegetative Organs between Early- and Middle-Maturing Cotton Lines and the Relationships to Dry Matter Accumulation [J]. Crops, 2023, 39(2): 106-114.
[14] Mei Li. Research Progress and Development Prospect of Adaptive Cultivation of Quinoa in Beijing [J]. Crops, 2022, 38(6): 14-22.
[15] Wang Heshou. Effects of Different Nitrogen Application Rates on Nutritional Quality of Vegetable Sweet Potato [J]. Crops, 2022, 38(6): 208-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!