Crops ›› 2025, Vol. 41 ›› Issue (2): 74-78.doi: 10.16035/j.issn.1001-7283.2025.02.010

Previous Articles     Next Articles

Genetic Diversity Analysis of 96 Waxy Maize Inbred Lines Based on SNP Chip

Li Wenyue1(), Yu Tao1, Cao Shiliang1, Ma Xuena1, Tang Gui2, Gao Li3, Yang Gengbin1()   

  1. 1Maize Research Institute, Heilongjiang Academy of Agricultural Sciences / Key Laboratory of Maize Biology and Genetics in the Northern Part of Northeast China, Ministry of Agriculture and Rural Affairs, Harbin 150000, Heilongjiang, China
    2Rural Revitalization Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150000, Heilongjiang, China
    3Suihua Branch, Heilongjiang Academy of Agricultural Sciences, Suihua 152000, Heilongjiang, China
  • Received:2024-01-30 Revised:2024-03-30 Online:2025-04-15 Published:2025-04-16

Abstract:

In recent years, waxy maize has been popular due to its unique texture and has become a favoured agricultural product widespread popularity. However, for waxy maize inbred lines, currently no clear classification has been reported. In order to improve the efficiency of fresh glutinous corn breeding in the Northeast of China, this study utilized the Maize 6H-60K gene chip to conduct genotype analysis on 96 waxy corn inbred lines from the Northeast of China. The results showed that among the 96 inbred lines, the gene diversity detected by 14 312 SNP markers ranged from 0.098 to 0.500, with an average of 0.387. The minimum allele frequency ranged from 0 to 0.5, with an average of 0.380, and the polymorphic information content ranged from 0.094 to 0.375, with an average of 0.306. The 96 materials were ultimately classified into three clusters, group A was the Kennian 1 maternal group, group B was the Xiannuo paternal group, and group C was the Kennian 1 paternal group.

Key words: Waxy maize, SNP, Group division, Genetic analysis

Fig.1

Distribution of genetic distance for 96 waxy maizes"

Fig.2

Minimum allele frequency histogram"

Table 1

Summary of genotypes"

项目Item 数值Numeric
样品数量Sample number 96
标记数量Number of markers 38 693
杂合比例Heterozygous ratio 0.034
最小等位基因频率Minimum allele frequency 0.380
基因多样性Gene diversity 0.387
PIC 0.306

Fig.3

The change curve of ΔK"

Fig.4

Principal component analysis of 96 waxy maize inbred lines"

Fig.5

Clustering analysis of 96 waxy maize inbred lines"

Fig.6

Group genetic structure analysis of 96 waxy maize inbred lines"

[1] 杨明花, 嵇闯, 崔亚坤, 等. 鲜食糯玉米货架期苞叶相关性状的配合力及其遗传效应分析. 玉米科学, 2023, 31(6):10-16.
[2] 马佳, 马莹, 王丽媛, 等. 上海鲜食玉米产业发展现状与对策研究. 上海农业学报, 2023, 39(5):149-156.
[3] 鲍坚东. 中国糯玉米起源与育种选择分子机制. 杭州:浙江大学, 2011.
[4] 邢政. 东北地区主要糯玉米自交系聚类分析及杂种优势的利用. 长春:吉林农业大学, 2017.
[5] 程宇坤. 山西省糯玉米自交系的遗传多样性分析及类群划分. 太原:山西大学, 2012.
[6] Reif J C, Melchinger A E, Xia X C, et al. Genetic distance based on simple sequence repeats and heterosis in tropical maize populations. Crop Science, 2003, 43(4):1275-1282.
[7] Akaogu I C, Badu-Apraku B, Adetimirin V O, et al. Genetic diversity assessment of extra-early maturing yellow maize inbreds and hybrid performance in Striga-infested and Striga-free environments. Journal of Agricultural Science, 2013, 151(4):519-537.
[8] Ilyas M Z, Park H, Jang S J, et al. Association mapping for evaluation of population structure, genetic diversity, and physiochemical traits in drought-stressed maize germplasm using SSR markers. Plants (Basel), 2023, 12(24):4092.
[9] Gao C S, Xin P F, Cheng C H, et al. Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers. PLoS ONE, 2014, 9 (10):e110638.
[10] 李松, 施德林, 董云武, 等. 基于SSR标记的云南35个玉米自交系遗传多样性分析. 云南农业大学学报(自然科学), 2023, 38(5):732-738.
[11] Ryu J, Lyu J I, Kim D G, et al. Single nucleotide polymorphism (SNP) discovery and association study of flowering times, crude fat and fatty acid composition in rapeseed (Brassica napus L.) mutant lines using genotyping-by-sequencing (GBS). Agronomy, 2021, 11(3):508-521.
[12] 吴金凤, 宋伟, 王蕊, 等. 利用SNP标记对51份玉米自交系进行类群划分. 玉米科学, 2014, 22(5):29-34.
[13] 卢柏山. 糯玉米骨干自交系的表型及SSR分类研究. 北京: 中国农业科学院, 2009.
[14] 范競升, 谢和霞, 谢小东, 等. 基于SNP标记揭示广西糯玉米地方品种的遗传多样性与群体遗传结构. 植物遗传资源学报, 2023, 24(3):661-670.
[15] Tian H L, Yang Y, Yi H M, et al. New resources for genetic studies in maize (Zea mays L.): a genome-wide Maize6H-60K single nucleotide polymorphism array and its application. The Plant Journal, 2021, 105(4):1113-1122.
[16] 王綦. 鲜食糯玉米食用品质评价及影响机制研究. 无锡:江南大学, 2022.
[17] 甘娜. 应用RAPD标记和细胞质基因组PCR-RFLP技术研究大花蕙兰的遗传多样性. 成都:四川农业大学, 2005.
[18] Amom T, Tikendra L, Apana N, et al. Efficiency of RAPD, ISSR, iPBS, SCoT and phytochemical markers in the genetic relationship study of five native and economical important bamboos of North-East India. Phytochemistry, 2020, 174(5):312-330.
[19] Lin C J, Zhang C B, Zhao H K, et al. Sequencing of the chloroplast genomes of cytoplasmic male-sterile and male-fertile lines of soybean and identification of polymorphic markers. Plant Science, 2014, 229(3):208-214.
[20] Han Y P, Chagné D, Gasic K, et al. BAC-end sequence-based SNPs and Bin mapping for rapid integration of physical and genetic maps in apple. Genomics, 2009, 93(3):282-288.
doi: 10.1016/j.ygeno.2008.11.005 pmid: 19059473
[21] 韩晴, 卢媛, 王义发, 等. 50个鲜食糯玉米农艺性状和SSR标记遗传多样性分析. 上海农业学报, 2016, 32(5):11-15.
[22] 杨亚桐, 董安忆, 刘松涛, 等. 基于SSR分子标记的糯玉米遗传多样性研究. 江苏农业科学, 2020, 48(2):83-86.
[23] 吴金凤. 利用SSR和SNP标记研究玉米自交系的遗传多样性. 长春:吉林农业大学, 2014.
[24] 高嵩, 刘宏伟, 何欢, 等. 利用SNP芯片进行玉米遗传多样性和群体遗传结构分析及新品种选育. 玉米科学, 2021, 29 (1):39-45.
[25] Govindaraj M, Vetriventhan M, Srinivasan M, et al. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives. Genetics Research International, 2015, 41(4):1-14.
[26] 赵久然, 李春辉, 宋伟, 等. 基于SNP芯片揭示中国玉米育种种质的遗传多样性与群体遗传结构. 中国农业科学, 2018, 51(4):626-644.
doi: 10.3864/j.issn.0578-1752.2018.04.003
[27] 张鹏, 管俊娇, 黄清梅, 等. 基于SNP芯片的云南玉米自交系遗传多样性和群体遗传结构分析. 南方农业学报, 2020, 51(9):2082-2089.
[1] Sun Yanjie, Wei Guocai, Wu Yuheng, Shi Yunqiang, Shao Yong, Liu Yingrui, Nan Yuantao, Zhang Weiyao. Genetic Diversity Analysis of 100 Maize Germplasm Resources by SNP Markers [J]. Crops, 2025, 41(2): 14-19.
[2] Wang Yanxun, Tian Jichun. Wide Adaptability Performance and Genetic Analysis of National Certified Wheat Variety Shannong 20 with High and Stable Yield [J]. Crops, 2023, 39(1): 46-51.
[3] Hu Dan. Genetic Analysis of Culm Gravity Height and Snapping Resistance in Common Buckwheat [J]. Crops, 2022, 38(4): 83-89.
[4] Qi Xiaolei, Li Xingfeng, Lü Guangde, Wang Ruixia, Wang Jun, Sun Xianyin, Sun Yingying, Chen Yongjun, Qian Zhaoguo, Wu Ke. Genetic Analysis of Taishan/Taikemai Serial Wheat Based on SNP Molecular Markers [J]. Crops, 2021, 37(5): 64-71.
[5] Su Yang, Yang Jing, Guo Yong, Du Weijun, Qiu Lijuan. Whole Genome Discovery and Analysis of Genes Related to 100-Seed Weight in Soybean [J]. Crops, 2021, 37(3): 8-18.
[6] Zeng Yanhua, Xie Hexia, Jiang Yufeng, Zhou Jinguo, Xie Xiaodong, Zhou Haiyu, Tan Xianjie, Qin Lanqiu, Cheng Weidong. Genetic Diversity of Popcorn Landraces Based on SNP Markers [J]. Crops, 2020, 36(5): 65-70.
[7] Li Zhongnan, Wang Yueren, Zhang Yanhui, Wu Shenghui, Qu Haitao, Xu Zhengxue, Li Guangfa. Genetic Analysis of Super Multiple Ear Row Number in DH Line 15D969 of Maize [J]. Crops, 2020, 36(5): 88-92.
[8] Zhou Wei,Cui Fuzhu,Duan Hongkai,Hao Guohua,Yang Hui,Liu Ruirui. Effects of Sowing Date on Yield and Quality of Waxy Maize [J]. Crops, 2020, 36(2): 156-161.
[9] Zhang Xiaoyu,Zhang Yaling,Jin Xuehui,Yan Tianyu,Zhao Ze. Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae [J]. Crops, 2020, 36(2): 182-187.
[10] Shi Yaxing,Dong Hui,Lu Baishan,Zhao Jiuran,Fan Yanli,Xu Li,Yu Ainian. Grain Dehydration and Gelatinization Characteristics of Waxy Maize at Different Harvesting Time [J]. Crops, 2019, 35(3): 112-117.
[11] Cai Dongfang,Zhang Shufen,Wang Jianping,Cao Jinhua,Wen Yancheng,Zhang Shufa,He Junping,Zhao Lei,Wang Dongguo,Zhu Jiacheng. Genetic Analysis of Rape Hybrid Fengyou No.10 Using SNP Chips [J]. Crops, 2019, 35(3): 80-85.
[12] Yaxing Shi,Li Xu,Jiuran Zhao,Baishan Lu,Yanli Fan. Waxy Maize Industry Advantages in China and Opportunities in the Development of the Belt and Road [J]. Crops, 2019, 35(2): 15-19.
[13] Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang. Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers [J]. Crops, 2019, 35(1): 15-21.
[14] Yanli Fan,Hui Dong,Baishan Lu,Yaxing Shi,Ning Gao,Yamin Shi,Li Xu,Shengli Xi,Cuifen Zhang,Yanhui Liu. Effects of Sowing Date on Starch Gelatinization Characteristics of Different Waxy Maize Varieties [J]. Crops, 2018, 34(4): 79-83.
[15] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!