Crops ›› 2020, Vol. 36 ›› Issue (2): 156-161.doi: 10.16035/j.issn.1001-7283.2020.02.023

Previous Articles     Next Articles

Effects of Sowing Date on Yield and Quality of Waxy Maize

Zhou Wei1,2,Cui Fuzhu1(),Duan Hongkai1,Hao Guohua1,Yang Hui1,Liu Ruirui1   

  1. 1 College of Agriculture, Shanxi Agricultural University, Taigu 030801, Shanxi, China
    2 Institute of Edible Fungi, Shanxi Academy of Agricultural Sciences, Taiyuan 030000, Shanxi, China
  • Received:2019-10-08 Revised:2019-10-31 Online:2020-04-15 Published:2020-04-13
  • Contact: Fuzhu Cui E-mail:cuifuz@sina.com

Abstract:

In order to meet the different demands of farmers for waxy maize planting, the effect of sowing date on the yield and quality of waxy maize in mid-late ripening areas of Shanxi Province was studied. With the Jinnuo 18 and Jinnuo 20 as experimental materials, from April 26th to July 5th, six sowing date treatments were set to study their effects on yield, spike length, 100-grain weight, grain spike weight and relative contents of grain protein, starch, crude fiber and lysine. The results showed that sowing date and variety have significant effects on the yield and quality of waxy maize. The yield, spike length, 100-grain weight and grain spike weight of the two waxy maize varieties under B3 sowing date treatments (May 24th) were significantly higher than those under other sowing date treatments, which indicated that waxy maize was suitable for sowing around the Grain Full. Earlier sowing date could increase relative contents of grain protein and lysine, and delaying the sowing date would decrease the contents of grain crude fiber and lysine of waxy maize. The relative starch contents of waxy maize at B1 and B6 sowing dates were lower than that of other sowing dates, and the relative starch contents of waxy maize at B4 and B5 sowing dates were higher than that of other sowing dates. The results showed that the proper delay of sowing date could improve the relative starch content of waxy maize, but the early or too late sowing could reduce the starch content of waxy maize. Through correlation analysis, it was found that accumulated temperature and precipitation had a significant positive correlation with yield, grain spike weight and lysine relative content and a significant positive correlation with spike length and 100-grain weight, indicating that sowing date had a significant impact on yield traits and lysine relative content in grain. In mid-late ripening areas of Shanxi Province, the yield of waxy maize is the highest when sowing around B3, properly advancing sowing date is beneficial to increase the contents of grain protein and lysine, and properly delaying sowing date is beneficial to increase the contents of grain crude fiber and starch content.

Key words: Waxy maize, Sowing date, Yield, Quality

Fig.1

Temperature in growth period of waxy maize in 2018"

Fig.2

Precipitation in growth period of waxy maize in 2018"

Table 1

Accumulated temperature (≥10℃) during the growth period of waxy maize in different sowing dates ℃"

B1 B2 B3 B4 B5 B6
3 996.5 3 718.2 3 421.4 3 087.8 2 751.1 2 373.5

Table 2

Effects of sowing date and variety on yield traits of waxy maize"

品种Variety 播期Sowing date 穗长Spike length (cm) 百粒重100-grain weight (g) 穗粒重Grain weight per spike(g) 产量Yield (kg/hm2)
A1 B1 22.50±1.46abc 31.58±3.89c 205.28±30.75cd 11 950.86±100.46bc
B2 22.57±1.47ab 37.10±1.78ab 223.24±31.48bc 13 393.98±188.93ab
B3 22.56±0.83ab 38.44±2.35a 236.94±33.95ab 13 752.55±95.29a
B4 23.80±1.30a 37.31±3.47ab 255.62±34.65a 11 588.60±210.02cd
B5 21.90±1.23bcde 36.21±2.61ab 187.11±31.83de 8 655.67±228.26ef
B6 20.32±0.95cde 21.78±1.92c 131.45±20.35f 7 262.77±105.19fg
A2 B1 20.84±1.39de 25.87±3.21d 175.33±23.65e 10 948.55±175.95cd
B2 21.08±1.51bcde 36.58±1.89ab 217.09±20.70bc 10 267.81±203.29de
B3 22.22±1.50abcd 36.89±3.71ab 228.82±36.82abc 12 045.94±110.41bc
B4 20.01±1.43e 34.35±3.87b 213.63±31.62bcd 9 866.06±87.47de
B5 18.22±1.91f 27.37±1.83d 200.83±27.87cde 9 120.38±171.38e
B6 16.41±1.67g 18.83±2.04f 95.01±11.49g 5 883.35±247.38g

Table 3

Effects of sowing date and variety on grain quality of waxy maize %"

品种Variety 播期Sowing date 蛋白质含量Protein content 淀粉含量Starch content 粗纤维含量Crude fiber content 赖氨酸含量Lysine content
A1 B1 10.08±0.04bc 72.75±0.35bc 3.24±0.09cd 0.17±0.02abcd
B2 10.17±0.09ab 73.30±0.57ab 3.27±0.07cd 0.15±0.01cde
B3 9.97±0.10cde 73.25±0.50ab 3.32±0.11c 0.16±0.01bcd
B4 9.85±0.09ef 73.51±0.56a 3.33±0.04c 0.13±0.01ef
B5 9.83±0.09f 73.63±0.22a 3.32±0.09c 0.13±0.01de
B6 9.85±0.07ef 72.38±0.53cd 3.17±0.08d 0.11±0.02fg
A2 B1 10.24±0.13a 71.58±0.23e 3.64±0.11a 0.18±0.02a
B2 10.29±0.03a 71.98±0.18de 3.66±0.08a 0.17±0.02abc
B3 10.06±0.06bcd 72.27±0.29cd 3.72±0.02a 0.18±0.01ab
B4 9.96±0.14cde 72.48±0.43cde 3.67±0.07a 0.16±0.03bcde
B5 9.98±0.07def 72.20±0.25cde 3.68±0.06a 0.17±0.01cde
B6 10.11±0.04ab 72.30±0.35cd 3.50±0.09b 0.09±0.01g

Table 4

Correlation analysis between accumulated temperature and yield and quality of waxy maize"

相关系数
Correlation coefficient
穗长
Spike
length
百粒重
100-grain
weight
穗粒重
Grain weight
per spike
产量
Yield
蛋白质含量
Protein content
粗纤维含量
Crude
fiber content
淀粉含量
Starch content
赖氨酸含量
Lysine
content
积温
Accumulated
temperature
穗长Spike length -1.00
百粒重100-grain weight -0.74** -1.00
穗粒重Grain weight per spike -0.75** -0.91** -1.00
产量Yield -0.78** -0.77** -0.84** -1.00
蛋白质含量Protein content -0.13 -0.05 -0.03 -0.22 -1.00
粗纤维含量Crude fiber content -0.42 -0.01 -0.09 -0.08 -0.43 -1.00
淀粉含量Starch content -0.51 -0.55 -0.40 -0.32 -0.59* -0.67* -1.00
赖氨酸含量Lysine content -0.53 -0.48 -0.58* -0.64* -0.36 -0.32 -0.30 1.00
积温Accumulated temperature -0.56* -0.49 -0.56* -0.78** -0.65* -0.12 -0.13 0.76** 1.00

Table 5

Correlation analysis between precipitation and yield and quality of waxy maize"

相关系数 Correlation coefficient 穗长
Spike
length
百粒重
100-grain
weight
穗粒重
Grain weight
per spike
产量
Yield
蛋白质含量
Protein content
粗纤维含量
Crude fiber content
淀粉含量
Starch content
赖氨酸含量
Lysine
content
降水量
Precipitation
穗长Spike length -1.00
百粒重100-grain weight -0.74** -1.00
穗粒重Grain weight per spike -0.75** -0.91** -1.00
产量Yield -0.78** -0.77** -0.84** -1.00
蛋白质含量Protein content -0.13 -0.05 -0.03 -0.22 -1.00
粗纤维含量Crude fiber content -0.42 -0.01 -0.09 -0.08 -0.43 -1.00
淀粉含量Starch content -0.51 -0.55 -0.40 -0.32 -0.59* -0.67* -1.00
赖氨酸含量Lysine content -0.53 -0.48 -0.58* -0.64* -0.36 -0.32 -0.30 1.00
降水量Precipitation -0.63* -0.64* -0.72** -0.83** -0.55 -0.17 -0.02 0.74** 1.00
[1] 郑绍虎, 方成刚, 姚文华 . 甜、糯玉米无公害栽培配套技术探讨. 种子科技, 2018(9):53-54.
[2] 周灵芝 . 3个不同株型鲜食糯玉米适宜密度试验. 南方农业学报, 2012,43(3):315-317.
[3] 何雪银, 吴翠荣, 田树云 , 等. 糯玉米、优质蛋自玉米花培反应率的研究初报. 西南农业学报, 2011,24(1):10-14.
[4] 习杨建华 . 玉米新品种“京科糯2000”高产栽培技术. 北京农业, 2011(30):39.
[5] 郑洪建, 王义发, 沈雪芳 , 等. 秋季鲜食糯玉米播种期与产量、积温关系研究. 上海农业学报, 2006,22(4):53-57.
[6] 刘明, 陶洪斌, 王璞 , 等. 播期对春玉米生长发育与产量形成的影响. 中国生态农业学报, 2009,17(1):18-23.
[7] 冯颖竹, 陈惠阳, 余土元 , 等. 播种期对南方秋播糯玉米主要品质成分的影响. 中国农业气象, 2006,27(2):142-146.
[8] 李向岭, 赵明, 李从锋 , 等. 播期和密度对玉米干物质积累动态的影响及其模型的建立. 作物学报, 2010,36(12):2143-2153.
[9] 吴凤兰, 王丽, 赵霞 . 采收期对糯玉米郑黄糯2号品质和鲜食产量的影响. 河南农业科学, 2016,45(10):29-31.
[10] 陆大雷, 郭换粉, 董策 , 等. 鲜食期和成熟期糯玉米粉理化特性的差异. 作物学报, 2010,36(12):2170-2178.
[11] 杨欢, 施燕凌, 陆大雷 , 等. 播期对夏播糯玉米淀粉理化特性的影响. 核农学报, 2016,30(9):1754-1762.
[12] Bonsal B R, Zhang X B, Vincent L A , et al. Characteristics of daily and extreme temperature over Canada. Journal of Climate, 2001,5(14) : 1959-1976.
[13] Frith P, Al expander L V, Dell-Marta P M , et al. Observed coherent changes in c1imatic extremes during the second half of the 20th century. Climate Research, 2002,19(1):193-212.
[14] 檀艳静 . 基于分期播种的气候变暖对周口夏玉米生长发育与产量的影响研究. 陕西农业科学, 2019,65(7):9-12.
[15] 钱锦霞, 郭建平 . 东北地区春玉米生长发育和产量对温度变化的响应. 中国农业气象, 2013(3):312-316.
[16] 曹庆军, 杨粉团, 李刚 , 等. 播期对吉林省玉米产量及品质的影响研究. 玉米科学, 2013,21(5):71-75.
[17] 郑洪建, 董树亭, 王空军 , 等. 生态因素对玉米品种产量影响及调控的研究. 作物学报, 2001(6):862-868.
[18] 孔令平, 张海艳, 赵延明 . 播期和密度对不同玉米品种淀粉糊化特性和子粒品质的影响. 玉米科学, 2014,22(3):98-102,108.
[19] 张胜, 赵利梅, 伊春芳 , 等. 播种期对春玉米籽粒及其营养品质形成的影响. 内蒙古农业大学学报, 2000,21(增刊1):26-29.
[20] 刘淑云, 董树亭, 胡昌浩 . 生态因素与玉米酶活性代谢研究. 华北农学报, 2004(4):62-65.
[21] 许佳琦, 钱聪, 孙彦坤 , 等. 不同播期对玉米产量和品质的影响. 黑龙江农业科学, 2019(8):32-34.
[1] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize [J]. Crops, 2020, 36(2): 140-146.
[2] Shen Hongtao,Zhang Fusheng,Li Dong,Qiu Jianhua,Cai Xinghong,Qin Yubao. Effects of Different Preceding Crops and Planting Density on Yield and Quality of Flue-Cured Tobacco in Mudanjiang [J]. Crops, 2020, 36(2): 105-111.
[3] Wang Tianwen,Li Changzhong,Chen Guanghai. Effects of Sowing Dates and Densities on Propagation, Growth and Yield of Potato Seeds [J]. Crops, 2020, 36(2): 162-167.
[4] Li Ruijie,Tang Huihui,Wang Qingyan,Xu Yanli,Fang Mengying,Yan Peng,Dong Zhiqiang,Zhang Fenglu. Effects of 5- Aminolevulinic Acid and Ethylene Compounds on Photosynthetic Characteristics and Yield of Spring Maize in Northeast China [J]. Crops, 2020, 36(2): 125-133.
[5] Chen Diwen,Zhou Wenling,Ao Junhua,Huang Ying,Jiang Yong,Han Xihong,Qin Yimin,Shen Hong. Effects of Seaweed Extract on Yield, Quality and Nitrogen Use Efficiency of Sweet Corn [J]. Crops, 2020, 36(2): 134-139.
[6] Fan Yegeng,Yan Haifeng,Chen Rongfa,Qiu Lihang,Zhou Huiwen,Huang Xing,Weng Mengling,Wu Jianming,Li Yangrui,Wei Shengman. The Difference of Single Bud Seedling of the Third Generation of Sugarcane Virus-Free Plantlets with Different Seedcane Sizes and Transplanting Effect [J]. Crops, 2020, 36(2): 194-199.
[7] Liu Xin,Zhu Rong,Yang Mei,Liu Zhangyong. Screening of High-Yield Germplasms for Ratoon Rice and Analysis of High Yield Composition [J]. Crops, 2020, 36(2): 28-33.
[8] Liu Weixing,He Qunling,Zhang Fengye,Fan Xiaoyu,Chen Lei,Li Ke,Wu Jihua. AMMI Model Analysis on Regional Trials of Large-Seeded Peanut Varieties [J]. Crops, 2020, 36(2): 60-64.
[9] Yang Zhichang,Shen Tao,Luo Zhuo,Peng Zhi,Hu Yuqian,Zi Tao,Xiong Tinghao,Song Haixing. Effects of Low Nitrogen Rate Combined with High Planting Density on Yield Formation and Nitrogen Use Efficiency of Machine-Transplanted Double Cropping Rice [J]. Crops, 2020, 36(2): 71-81.
[10] Chen Tianxin,Wang Yanjie,Zhang Yan,Chang Xuhong,Tao Zhiqiang,Wang Demei,Yang Yushuang,Zhu Yingjie,Liu Akang,Shi Shubing,Zhao Guangcai. Effects of Different Nitrogen Rates on Photosyntheticand Physiological Indexes and Yield of Winter Wheat [J]. Crops, 2020, 36(2): 88-96.
[11] Zhang Bo,Gao Tiantian,Cheng Hongbo,Li Rui,Chai Yuwei,Li Yawei,Chai Shouxi. Effects of Mulching on Water Content of Plant and Flag Leaves and Grain Yield of Winter Wheat in Dryland [J]. Crops, 2020, 36(2): 97-104.
[12] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice [J]. Crops, 2020, 36(2): 1-8.
[13] Zhang Kaixuan,Ding Mengqi,Li Faliang,Tang Yu,Yang Keli,Yang Fuyu,Zhang Hanmin,Yuan Rengui,Hu Yongping,Zhou Meiliang. Selective Breeding of Fagopyrum cymosum (Trev.) Meisn Zhongjin No.1 for Medicine and Forage and the Study of the Economic Benefits [J]. Crops, 2020, 36(1): 29-34.
[14] Gao Jie,Li Qingfeng,Li Xiaorong,Feng Guangcai,Peng Qiu. Analysis of the Characteristics of Dry Matter Production and Light Energy Utilization of Waxy Sorghum Applied in Different Eras in Guizhou Province [J]. Crops, 2020, 36(1): 41-46.
[15] Jing Peipei,Ren Hongru,Yang Hongjian,Dai Qigen. Effects of Saline Stress on Leaf Photosynthesis Characteristics and Grain Yield of Two Rice Cultivars (Lines) [J]. Crops, 2020, 36(1): 67-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .