Crops ›› 2021, Vol. 37 ›› Issue (5): 64-71.doi: 10.16035/j.issn.1001-7283.2021.05.010
Previous Articles Next Articles
Qi Xiaolei1(), Li Xingfeng2(), Lü Guangde1, Wang Ruixia1, Wang Jun3, Sun Xianyin1, Sun Yingying1, Chen Yongjun1, Qian Zhaoguo1(), Wu Ke1
[1] | 刘志勇, 王道文, 张爱民, 等. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19(3):430-434. |
[2] | 吕晓欢, 冯晶, 蔺瑞明, 等. 2009-2010年河南、河北、山东三省小麦区试品种(系)的亲缘系数分析. 麦类作物学报, 2013, 33(3):455-460. |
[3] | 蒲艳艳, 宫永超, 李娜娜, 等. 中国小麦作物遗传多样性研究进展. 中国农学通报, 2016, 32(30):7-13. |
[4] |
Sun Q X, Ni Z F, Liu Z Y, et al. Genetic relationships and diversity among Tibetan wheat,common wheat and European spelt wheat revealed by RAPD markers. Euphytica, 1998, 99:205-211.
doi: 10.1023/A:1018316129246 |
[5] | Talebi R, Fayyaz F. Quantitative evaluation of genetic diversity in Iranian modern cultivars of wheat (Triticum aestivum L.) using morphological and amplified fragment length polymorphism (AFLP) markers. Biharean Biologist, 2012, 6(1):14-18. |
[6] | 王江春, 胡延吉, 余松烈, 等. 建国以来山东省小麦品种及其亲本的亲缘系数分析. 中国农业科学, 2006, 39(4):664-672. |
[7] |
Wang H Y, Wang X E, Chen P D, et al. Assessment of genetic diversity of Yunnan,Tibetan,and Xinjiang wheat using SSR markers. Journal of Genetic and Genomics, 2007, 34:623-633.
doi: 10.1016/S1673-8527(07)60071-X |
[8] | 傅晓艺, 刘桂茹, 杨学举. 中国部分优质小麦品种(系) 遗传多样性的SSR 分析. 麦类作物学报, 2007, 27(5):776-780. |
[9] | 蒲艳艳, 程凯, 李斯深. 山东省近期育成小麦品种遗传多样性的SSR 分析. 分子植物育种, 2011, 9(4):443-449. |
[10] |
Colasuonno P, Gadaleta A, Giancaspro A, et al. Development of a high- density SNP- based linkage map and detection of yellow pigment content QTLs in durum wheat. Molecular Breeding, 2014, 34(4):1563-1578.
doi: 10.1007/s11032-014-0183-3 |
[11] |
Allen A M, Winfield M O, Burridge A J, et al. Characterization of a wheat breeder’s array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal, 2017, 15(3):390-401.
doi: 10.1111/pbi.2017.15.issue-3 |
[12] |
Avni R, Nave M, Eilam T, et al. Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Molecular Breeding, 2014, 34(4):1549-1562.
doi: 10.1007/s11032-014-0176-2 |
[13] | Lucas S J, Salantur A, Yazar S, et al. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Functional and Integrative Genomics, 2017, 6(17):667-685. |
[14] | 李玉刚, 任民, 孙绿, 等. 利用SSR 和SNP 标记分析鲁麦14 对青农2 号的遗传贡献. 作物学报, 2018, 44(2):159-168. |
[15] |
Xu X T, Zhu Z W, Jia A L, et al. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216:3.
doi: 10.1007/s10681-019-2537-8 |
[16] |
Tan M K, EI- Bouhssini M, Emebiri L, et al. A SNP marker for the selection of HfrDrd,a Hessian fly- response gene in wheat. Molecular Breeding, 2015, 35:216-225.
doi: 10.1007/s11032-015-0410-6 |
[17] |
Lin M, Cai S B, Wang S, et al. Genotyping-by-sequencing (GBS)identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015, 128(7):1385-1395.
doi: 10.1007/s00122-015-2513-1 |
[18] |
Gao L L, Kielsmeier-Cook J, Bajgain P, et al. Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Molecular Breeding, 2015, 35:207.
doi: 10.1007/s11032-015-0404-4 |
[19] |
Liu W Z, Maccaferri M, Bulli P, et al. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f.sp. tritici in elite durum wheat. Theoretical and Applied Genetics, 2017, 130(4):649-667.
doi: 10.1007/s00122-016-2841-9 |
[20] |
Jighly A, Oyiga B C, Makdis F, et al. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theoretical and Applied Genetics, 2015, 128(7):1277-1295.
doi: 10.1007/s00122-015-2504-2 |
[21] |
Chen G F, Zhang H, Deng Z Y, et al. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica, 2016, 212(2):173-185.
doi: 10.1007/s10681-016-1750-y |
[22] | 翟俊鹏, 李海霞, 毕惠惠, 等. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45(10):1488-1502. |
[23] | 曹廷杰, 谢菁忠, 吴秋红, 等. 河南省近年审定小麦品种基于系谱和SNP 标记的遗传多样性分析. 作物学报, 2015, 41(2):197-206. |
[24] |
Mangini G, Margiotta B, Marcotuli I, et al. Genetic diversity and phenetic analysis in wheat (Triticum turgidum subsp. durum and Triticum aestivum subsp. aestivum) landraces based on SNP markers. Genetic Resources and Crop Evolution, 2017, 64(6):1269-1280.
doi: 10.1007/s10722-016-0435-7 |
[25] | 刘易科, 朱展望, 陈泠, 等. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46(2):307-314. |
[26] |
Chao S M, Dubcovsky J, Dvorak J, et al. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11:727.
doi: 10.1186/1471-2164-11-727 |
[27] | 郝晨阳, 王兰芬, 张学勇, 等. 我国育成小麦品种的遗传多样性演变. 中国科学 C 辑, 2005, 35(5):408-415. |
[28] | Rohlf F J. NTSYS-pc:Numerical taxonomy and multivariate analysis system. Version 2.2. New York:Exeter Software, 2009. |
[29] |
Zhang Q F, Allard R W. Sampling variance of the genetic diversity index. Journal of Heredity, 1986, 77:54-55.
doi: 10.1093/oxfordjournals.jhered.a110169 |
[30] |
Ren J, Chen L, Sun D K, et al. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evolutionary Biology, 2013, 13:169.
doi: 10.1186/1471-2148-13-169 |
[31] |
Würschum T, Langer S M, Longin C F H, et al. Population structure,genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126:1477-1486.
doi: 10.1007/s00122-013-2065-1 pmid: 23429904 |
[32] | 盖红梅, 李玉刚, 王瑞英, 等. 鲁麦14 对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38(6):954-961. |
[33] | 程斌, 张淑英, 张明霞, 等. 山东省近年育成小麦品种(系)的遗传多样性分析. 山东农业科学, 2016, 48(9) :17-22. |
[34] |
Su J Y, Zheng Q, Li H W, et al. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Science, 2009, 176:824-836.
doi: 10.1016/j.plantsci.2009.03.006 |
[35] | 贾继增. 小麦分子标记研究进展. 生物技术通报, 1997(2):1-5. |
[36] |
Jia H Y, Wan H S, Yang S H, et al. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 2013, 126(8):2123-2139.
doi: 10.1007/s00122-013-2123-8 |
[37] |
Wang R X, Hai L, Zhang X Y, et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theoretical and Applied Genetics, 2009, 118(2):313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131 |
[38] |
Narasimhamoorthy B, Gill B S, Fritz A K, et al. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theoretical and Applied Genetics, 2006, 112(5):787-796.
pmid: 16463062 |
[39] |
Kumar N, Kulwal P L, Balyan H S, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19:163-177.
doi: 10.1007/s11032-006-9056-8 |
[40] |
Zhang W, Gianibelli M C, Rampling L R, et al. Characterization and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 108(7):1409-1419.
pmid: 14727031 |
[41] |
Gupta P K, Balyan H S, Sharma S, et al. Genetics of yield,abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(3):1569-1602.
doi: 10.1007/s00122-020-03583-3 |
[42] |
Chen W G, Sun D Z, Yan X, et al. QTL analysis of wheat kernel traits,and genetic effects of qKW-6A on kernel width. Euphytica, 2019, 215:11.
doi: 10.1007/s10681-018-2333-x |
[43] |
Hai L, Guo H J, Wagner C, et al. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 2008, 175:226-232.
doi: 10.1016/j.plantsci.2008.03.006 |
[44] | Zhai H J, Feng Z Y, Li J, et al. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 2016, 7:1617. |
[45] |
Cuthbert J L, Somers D J, Brûlé-Babel A L, et al. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2008, 117(4):595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583 |
[46] |
Reif J C, Maurer H P, Korzun V, et al. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theoretical and Applied Genetics, 2011, 123(2):283-292.
doi: 10.1007/s00122-011-1583-y |
[47] |
Chen Z Y, Cheng X J, Chai L L, et al. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(1):1825-1838.
doi: 10.1007/s00122-020-03556-6 |
[48] |
Huang X Q, Cloutier S, Lycar L, et al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113(4):753-766.
pmid: 16838135 |
[49] |
Zhang P P, Lan C X, Asad M A, et al. QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. Molecular Breeding, 2019, 39:98.
doi: 10.1007/s11032-019-1004-5 |
[50] |
Carter A H, Garland-Campbell K, Kidwell K K. Genetic mapping of quantitative trait loci associated with Important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Science, 2011, 51:84-95.
doi: 10.2135/cropsci2010.03.0185 |
[51] |
Nakamura T, Yamamori M, Hirano H, et al. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochemical Genetics, 1993, 31:75-86.
pmid: 8471025 |
[52] |
He X Y, He Z H, Zhang L P, et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007, 115(1):47-58.
pmid: 17426955 |
[53] | 赵春华, 樊小莉, 王维莲, 等. 小麦候选骨干亲本科农9204 遗传构成及其传递率. 作物学报, 2015, 41(4):574-584. |
[54] |
Zhang D L, Hao C Y, Wang L F, et al. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236:1507-1517.
doi: 10.1007/s00425-012-1708-9 |
[55] |
Huang X Q, Kempf H, Ganal M W, et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109(5):933-943.
pmid: 15243706 |
[56] |
Ollier M, Talle V, Brisset A L, et al. QTL mapping and successful introgression of the spring wheat‑derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. Theoretical and Applied Genetics, 2020, 133(1):457-477.
doi: 10.1007/s00122-019-03476-0 |
[57] |
Sun X C, Marza F, Ma H X, et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theoretical and Applied Genetics, 2010, 120(5):1041-1051.
doi: 10.1007/s00122-009-1232-x |
[58] |
Sun X Y, Wu K, Zhao Y, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165:615-624.
doi: 10.1007/s10681-008-9794-2 |
[1] | Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127. |
[2] | Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145. |
[3] | Duan Zhenying, Xu Xinyu, Li Xing, Li Zaifeng, Ma Jun, Yao Zhanjun. Leaf Rust Resistance Gene Analysis of 12 Wheat Cultivars in Main Producing Areas [J]. Crops, 2021, 37(5): 20-27. |
[4] | Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49. |
[5] | Liu Xin, Yang Fang, Deng Junbo, Wang Aiai, He Nian, Chen Yan. Phenotypic Analysis and Comprehensive Evaluation of Soybean Strains in Jianghan Plain of China [J]. Crops, 2021, 37(5): 57-63. |
[6] | Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9. |
[7] | Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31. |
[8] | Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45. |
[9] | Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27. |
[10] | Li Mengyu, Gao Chuang, Li Qiaoyun, Xu Kaige, Wang Siyu, Niu Jishan. Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage [J]. Crops, 2021, 37(3): 40-45. |
[11] | Zhou Zhengping, Tian Baogeng, Chen Wanhua, Wang Ziyang, Yuan Wei, Liu Shiping. Effects of Different Tillage Methods and Straw Returning on Soil Nutrients and Wheat Yield and Quality [J]. Crops, 2021, 37(3): 78-83. |
[12] | Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105. |
[13] | Jia Zimiao, Qiu Yuliang, Lin Zhishan, Wang Ke, Ye Xingguo. Research Progress on Wheat Improvement by Using Desirable Genes from Its Relative Species [J]. Crops, 2021, 37(2): 1-14. |
[14] | Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123. |
[15] | Yang Chongqing, Chang Keqin, Mu Lanhai, Du Yanping, Zhang Jiupan, Li Yaodong, Zhang Xiaojuan. Status and Trend Analysis of Buckwheat Variety Improvement and Industrial Development [J]. Crops, 2021, 37(2): 28-34. |
|