Crops ›› 2021, Vol. 37 ›› Issue (5): 64-71.doi: 10.16035/j.issn.1001-7283.2021.05.010

Previous Articles     Next Articles

Genetic Analysis of Taishan/Taikemai Serial Wheat Based on SNP Molecular Markers

Qi Xiaolei1(), Li Xingfeng2(), Lü Guangde1, Wang Ruixia1, Wang Jun3, Sun Xianyin1, Sun Yingying1, Chen Yongjun1, Qian Zhaoguo1(), Wu Ke1   

  1. 1Tai’an Academy of Agricultural Sciences, Tai’an 271000, Shandong, China
    2Tai’an Subcenter of National Wheat Improvement Center, Tai’an 271018, Shandong, China
    3Tai’an Agriculture and Rural Bureau, Tai’an 271000, Shandong, China
  • Received:2020-10-27 Revised:2021-06-17 Online:2021-10-15 Published:2021-10-14
  • Contact: Qian Zhaoguo E-mail:qixiaoleielica226@163.com;lixf@sdau.edu.cn;qianzhaoguo@163.com

Abstract:

To clarify the genetic relationship and genetic differences of the new wheat cultivars (lines) bred in recent years, the whole-genome of 21 new wheat cultivars (lines) were scanned, the genetic distance and chromosome sections/loci were analyzed to clarify their genetic relationship and genetic difference characteristics. The genetic analysis of 21 new wheat cultivars (lines) was conducted by 2029 SNP loci. In the three genomes, B genome had lightly higher diversity, followed by A and D genomes; among the seven homologous groups, the 3rd and 6th groups showed high genetic diversity; among the 21 chromosomes, the genetic diversity of 3A, 1B, and 6B were high, while 1A and 6A were low. The average genetic distance of wheat cultivars (lines) was analyzed according to the year of their approval (breeding). The average genetic distance of the cultivars (lines) first increased and the decreased, the genetic diversities were gradually decreased. The genetic similarity coefficients of 21 wheat cultivars (lines) ranged from 0.69 to 0.99 and these 21 wheat cultivars (lines) could be grouped into four groups. The wheat cultivars (lines) which were grouped in the same group were from the same year and consistent with its pedigree relationship. Twenty-one wheat chromosome genotypic maps were constructed and analyzed. It was found that the common SNP and chromosome segments of cultivars (lines) bred in 00s, 10s, and present were mainly distributed in A, D and B genomes, respectively. Moreover, their traits were consistent with the published traits in different breeding years. At the same time, this study also found that the 21 cultivars(lines) had 25 SNP loci which distributed on chromosomes 1A, 5A, 6A, 7A, 2B, 3B, 6B, 1D, 2D, 3D, and 7D and the number of SNP loci distributed on each chromosome were also different. The selection of grain yield, plant height, tiller number, heading stage, grouting rate, and disease resistance were emphasized in the process of wheat hybrid combinations and breeding. The above results could provide a breeding reference for new wheat cultivars in the future.

Key words: Wheat, SNP marker, Cluster analysis, Genotypic map, Chromosome sections/loci

Table 1

Wheat materials, combinations and released time"

编号
Number
品种(系)
Variety (line)
组合
Combination
审(认)
定年份
Released year
年代
Age
1 鲁麦18 86026/8-038//沛县304-1 1993 90s
2 泰山21 26744/泰山10号//
鲁麦7号/3/鲁麦18
2002/2003 00s
3 泰山22 鲁麦18/鲁麦14 2004 00s
4 泰山23 881414/876161 2004 00s
5 泰山24 904017/郑州8329 2005 00s
6 泰山9818 21-11/935021 2006 00s
7 泰山27 泰山651/藏选1号 2012 10s
8 泰山28 3262/皖麦38 2013 10s
9 泰科麦30 淮阴9908/漯麦9424 2019 10s
10 泰科麦31 泰山26/淮麦20 2018 10s
11 泰科麦32 洛旱3号/莱州3279 2018 10s
12 泰科麦33 郑麦366/淮阴9908 2018 10s
13 泰科紫麦1号 良星66/山农紫麦 2019 10s
14 泰科麦38 山农17/良星99 Present
15 泰科麦308 邢麦6号/淮0458 Present
16 泰科麦34 泰山28/济麦22 2020 Present
17 泰科麦6007 泰山21/济麦22 Present
18 泰科麦36 泰农18/齐丰2号 2021 Present
19 TKM6215 良星99/邯94-5378 Present
20 TKM0564 烟农999/良星66 Present
21 TKM7105 泰山26/淮麦0208 Present

Table 2

Genetic diversity comparison of three genomes"

项目Item A基因组
A genome
B基因组
B genome
D基因组
D genome
合计
Total
均值
Mean
检测位点数Number of the detected locus 730 820 479 2029
等位变异总数(∑Aij)Total allelic variations 1510 1753 1022 4285
平均等位变异丰富度(∑Aij/Loci)Mean allele richness 2.07±0.0006 2.14±0.0005 2.13±0.0011 2.11±0.0010
平均遗传多样性指数(Ht)Mean genetic diversity index 0.24±0.0002 0.24±0.0002 0.21±0.0003 0.23±0.0002

Fig.1

Genetic diversity of seven homologous groups of the varieties (lines)"

Fig.2

Genetic diversity of 21 chromosomes of varieties (lines)"

Fig.3

Average genetic distance of wheat varieties (lines) in different ages"

Fig.4

UPGMA dendrogram of wheat cultivars"

Table 3

The number of SNP, genome (A, B and D) distribution and homologous groups (H1-H7) distribution in different breeding year"

名称
Name
年代Age
00s 10s Present
SNP 203 122 251
A 74 34 87
B 72 33 88
D 57 55 76
H1 19 14 28
H2 27 31 46
H3 32 10 42
H4 37 9 38
H5 29 15 30
H6 24 30 34
H7 35 13 33

Fig.5

Genotypic maps of 21 wheat varieties (lines) The arrows mark the SNP loci owned by all of 21 wheat varieties (lines)"

[1] 刘志勇, 王道文, 张爱民, 等. 小麦育种行业创新现状与发展趋势. 植物遗传资源学报, 2018, 19(3):430-434.
[2] 吕晓欢, 冯晶, 蔺瑞明, 等. 2009-2010年河南、河北、山东三省小麦区试品种(系)的亲缘系数分析. 麦类作物学报, 2013, 33(3):455-460.
[3] 蒲艳艳, 宫永超, 李娜娜, 等. 中国小麦作物遗传多样性研究进展. 中国农学通报, 2016, 32(30):7-13.
[4] Sun Q X, Ni Z F, Liu Z Y, et al. Genetic relationships and diversity among Tibetan wheat,common wheat and European spelt wheat revealed by RAPD markers. Euphytica, 1998, 99:205-211.
doi: 10.1023/A:1018316129246
[5] Talebi R, Fayyaz F. Quantitative evaluation of genetic diversity in Iranian modern cultivars of wheat (Triticum aestivum L.) using morphological and amplified fragment length polymorphism (AFLP) markers. Biharean Biologist, 2012, 6(1):14-18.
[6] 王江春, 胡延吉, 余松烈, 等. 建国以来山东省小麦品种及其亲本的亲缘系数分析. 中国农业科学, 2006, 39(4):664-672.
[7] Wang H Y, Wang X E, Chen P D, et al. Assessment of genetic diversity of Yunnan,Tibetan,and Xinjiang wheat using SSR markers. Journal of Genetic and Genomics, 2007, 34:623-633.
doi: 10.1016/S1673-8527(07)60071-X
[8] 傅晓艺, 刘桂茹, 杨学举. 中国部分优质小麦品种(系) 遗传多样性的SSR 分析. 麦类作物学报, 2007, 27(5):776-780.
[9] 蒲艳艳, 程凯, 李斯深. 山东省近期育成小麦品种遗传多样性的SSR 分析. 分子植物育种, 2011, 9(4):443-449.
[10] Colasuonno P, Gadaleta A, Giancaspro A, et al. Development of a high- density SNP- based linkage map and detection of yellow pigment content QTLs in durum wheat. Molecular Breeding, 2014, 34(4):1563-1578.
doi: 10.1007/s11032-014-0183-3
[11] Allen A M, Winfield M O, Burridge A J, et al. Characterization of a wheat breeder’s array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum). Plant Biotechnology Journal, 2017, 15(3):390-401.
doi: 10.1111/pbi.2017.15.issue-3
[12] Avni R, Nave M, Eilam T, et al. Ultra-dense genetic map of durum wheat × wild emmer wheat developed using the 90K iSelect SNP genotyping assay. Molecular Breeding, 2014, 34(4):1549-1562.
doi: 10.1007/s11032-014-0176-2
[13] Lucas S J, Salantur A, Yazar S, et al. High-throughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Functional and Integrative Genomics, 2017, 6(17):667-685.
[14] 李玉刚, 任民, 孙绿, 等. 利用SSR 和SNP 标记分析鲁麦14 对青农2 号的遗传贡献. 作物学报, 2018, 44(2):159-168.
[15] Xu X T, Zhu Z W, Jia A L, et al. Mapping of QTL for partial resistance to powdery mildew in two Chinese common wheat cultivars. Euphytica, 2020, 216:3.
doi: 10.1007/s10681-019-2537-8
[16] Tan M K, EI- Bouhssini M, Emebiri L, et al. A SNP marker for the selection of HfrDrd,a Hessian fly- response gene in wheat. Molecular Breeding, 2015, 35:216-225.
doi: 10.1007/s11032-015-0410-6
[17] Lin M, Cai S B, Wang S, et al. Genotyping-by-sequencing (GBS)identified SNP tightly linked to QTL for pre-harvest sprouting resistance. Theoretical and Applied Genetics, 2015, 128(7):1385-1395.
doi: 10.1007/s00122-015-2513-1
[18] Gao L L, Kielsmeier-Cook J, Bajgain P, et al. Development of genotyping by sequencing (GBS)- and array-derived SNP markers for stem rust resistance gene Sr42. Molecular Breeding, 2015, 35:207.
doi: 10.1007/s11032-015-0404-4
[19] Liu W Z, Maccaferri M, Bulli P, et al. Genome-wide association mapping for seedling and field resistance to Puccinia striiformis f.sp. tritici in elite durum wheat. Theoretical and Applied Genetics, 2017, 130(4):649-667.
doi: 10.1007/s00122-016-2841-9
[20] Jighly A, Oyiga B C, Makdis F, et al. Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theoretical and Applied Genetics, 2015, 128(7):1277-1295.
doi: 10.1007/s00122-015-2504-2
[21] Chen G F, Zhang H, Deng Z Y, et al. Genome-wide association study for kernel weight-related traits using SNPs in a Chinese winter wheat population. Euphytica, 2016, 212(2):173-185.
doi: 10.1007/s10681-016-1750-y
[22] 翟俊鹏, 李海霞, 毕惠惠, 等. 普通小麦主要农艺性状的全基因组关联分析. 作物学报, 2019, 45(10):1488-1502.
[23] 曹廷杰, 谢菁忠, 吴秋红, 等. 河南省近年审定小麦品种基于系谱和SNP 标记的遗传多样性分析. 作物学报, 2015, 41(2):197-206.
[24] Mangini G, Margiotta B, Marcotuli I, et al. Genetic diversity and phenetic analysis in wheat (Triticum turgidum subsp. durum and Triticum aestivum subsp. aestivum) landraces based on SNP markers. Genetic Resources and Crop Evolution, 2017, 64(6):1269-1280.
doi: 10.1007/s10722-016-0435-7
[25] 刘易科, 朱展望, 陈泠, 等. 基于SNP标记揭示我国小麦品种(系)的遗传多样性. 作物学报, 2020, 46(2):307-314.
[26] Chao S M, Dubcovsky J, Dvorak J, et al. Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics, 2010, 11:727.
doi: 10.1186/1471-2164-11-727
[27] 郝晨阳, 王兰芬, 张学勇, 等. 我国育成小麦品种的遗传多样性演变. 中国科学 C 辑, 2005, 35(5):408-415.
[28] Rohlf F J. NTSYS-pc:Numerical taxonomy and multivariate analysis system. Version 2.2. New York:Exeter Software, 2009.
[29] Zhang Q F, Allard R W. Sampling variance of the genetic diversity index. Journal of Heredity, 1986, 77:54-55.
doi: 10.1093/oxfordjournals.jhered.a110169
[30] Ren J, Chen L, Sun D K, et al. SNP-revealed genetic diversity in wild emmer wheat correlates with ecological factors. BMC Evolutionary Biology, 2013, 13:169.
doi: 10.1186/1471-2148-13-169
[31] Würschum T, Langer S M, Longin C F H, et al. Population structure,genetic diversity and linkage disequilibrium in elite winter wheat assessed with SNP and SSR markers. Theoretical and Applied Genetics, 2013, 126:1477-1486.
doi: 10.1007/s00122-013-2065-1 pmid: 23429904
[32] 盖红梅, 李玉刚, 王瑞英, 等. 鲁麦14 对山东新选育小麦品种的遗传贡献. 作物学报, 2012, 38(6):954-961.
[33] 程斌, 张淑英, 张明霞, 等. 山东省近年育成小麦品种(系)的遗传多样性分析. 山东农业科学, 2016, 48(9) :17-22.
[34] Su J Y, Zheng Q, Li H W, et al. Detection of QTLs for phosphorus use efficiency in relation to agronomic performance of wheat grown under phosphorus sufficient and limited conditions. Plant Science, 2009, 176:824-836.
doi: 10.1016/j.plantsci.2009.03.006
[35] 贾继增. 小麦分子标记研究进展. 生物技术通报, 1997(2):1-5.
[36] Jia H Y, Wan H S, Yang S H, et al. Genetic dissection of yield-related traits in a recombinant inbred line population created using a key breeding parent in China’s wheat breeding. Theoretical and Applied Genetics, 2013, 126(8):2123-2139.
doi: 10.1007/s00122-013-2123-8
[37] Wang R X, Hai L, Zhang X Y, et al. QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theoretical and Applied Genetics, 2009, 118(2):313-325.
doi: 10.1007/s00122-008-0901-5 pmid: 18853131
[38] Narasimhamoorthy B, Gill B S, Fritz A K, et al. Advanced backcross QTL analysis of a hard winter wheat × synthetic wheat population. Theoretical and Applied Genetics, 2006, 112(5):787-796.
pmid: 16463062
[39] Kumar N, Kulwal P L, Balyan H S, et al. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19:163-177.
doi: 10.1007/s11032-006-9056-8
[40] Zhang W, Gianibelli M C, Rampling L R, et al. Characterization and marker development for low molecular weight glutenin genes from Glu-A3 alleles of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 108(7):1409-1419.
pmid: 14727031
[41] Gupta P K, Balyan H S, Sharma S, et al. Genetics of yield,abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(3):1569-1602.
doi: 10.1007/s00122-020-03583-3
[42] Chen W G, Sun D Z, Yan X, et al. QTL analysis of wheat kernel traits,and genetic effects of qKW-6A on kernel width. Euphytica, 2019, 215:11.
doi: 10.1007/s10681-018-2333-x
[43] Hai L, Guo H J, Wagner C, et al. Genomic regions for yield and yield parameters in Chinese winter wheat (Triticum aestivum L.) genotypes tested under varying environments correspond to QTL in widely different wheat materials. Plant Science, 2008, 175:226-232.
doi: 10.1016/j.plantsci.2008.03.006
[44] Zhai H J, Feng Z Y, Li J, et al. QTL analysis of spike morphological traits and plant height in winter wheat (Triticum aestivum L.) using a high-density SNP and SSR-based linkage map. Frontiers in Plant Science, 2016, 7:1617.
[45] Cuthbert J L, Somers D J, Brûlé-Babel A L, et al. Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2008, 117(4):595-608.
doi: 10.1007/s00122-008-0804-5 pmid: 18516583
[46] Reif J C, Maurer H P, Korzun V, et al. Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theoretical and Applied Genetics, 2011, 123(2):283-292.
doi: 10.1007/s00122-011-1583-y
[47] Chen Z Y, Cheng X J, Chai L L, et al. Pleiotropic QTL influencing spikelet number and heading date in common wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2020, 133(1):1825-1838.
doi: 10.1007/s00122-020-03556-6
[48] Huang X Q, Cloutier S, Lycar L, et al. Molecular detection of QTLs for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113(4):753-766.
pmid: 16838135
[49] Zhang P P, Lan C X, Asad M A, et al. QTL mapping of adult-plant resistance to leaf rust in the Chinese landraces Pingyuan 50/Mingxian 169 using the wheat 55K SNP array. Molecular Breeding, 2019, 39:98.
doi: 10.1007/s11032-019-1004-5
[50] Carter A H, Garland-Campbell K, Kidwell K K. Genetic mapping of quantitative trait loci associated with Important agronomic traits in the spring wheat (Triticum aestivum L.) cross ‘Louise’ × ‘Penawawa’. Crop Science, 2011, 51:84-95.
doi: 10.2135/cropsci2010.03.0185
[51] Nakamura T, Yamamori M, Hirano H, et al. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochemical Genetics, 1993, 31:75-86.
pmid: 8471025
[52] He X Y, He Z H, Zhang L P, et al. Allelic variation of polyphenol oxidase (PPO) genes located on chromosomes 2A and 2D and development of functional markers for the PPO genes in common wheat. Theoretical and Applied Genetics, 2007, 115(1):47-58.
pmid: 17426955
[53] 赵春华, 樊小莉, 王维莲, 等. 小麦候选骨干亲本科农9204 遗传构成及其传递率. 作物学报, 2015, 41(4):574-584.
[54] Zhang D L, Hao C Y, Wang L F, et al. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.). Planta, 2012, 236:1507-1517.
doi: 10.1007/s00425-012-1708-9
[55] Huang X Q, Kempf H, Ganal M W, et al. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109(5):933-943.
pmid: 15243706
[56] Ollier M, Talle V, Brisset A L, et al. QTL mapping and successful introgression of the spring wheat‑derived QTL Fhb1 for Fusarium head blight resistance in three European triticale populations. Theoretical and Applied Genetics, 2020, 133(1):457-477.
doi: 10.1007/s00122-019-03476-0
[57] Sun X C, Marza F, Ma H X, et al. Mapping quantitative trait loci for quality factors in an inter-class cross of US and Chinese wheat. Theoretical and Applied Genetics, 2010, 120(5):1041-1051.
doi: 10.1007/s00122-009-1232-x
[58] Sun X Y, Wu K, Zhao Y, et al. QTL analysis of kernel shape and weight using recombinant inbred lines in wheat. Euphytica, 2009, 165:615-624.
doi: 10.1007/s10681-008-9794-2
[1] Wu Xinyu, Liu Zhenyang, Li Haiye, Zheng Yi, Tang Li, Xiao Jingxiu. Effects of Nitrogen Application and Intercropping on Nodule Formation and Nitrogen Uptake and Accumulation in Faba Bean [J]. Crops, 2021, 37(5): 120-127.
[2] Cao Lixia, Zhou Haitao, Zhang Xinjun, Shi Bihong, Zhang Lixia, Li Yunxia, Liu Junxin, Bai Jing, Zhao Shifeng. Effects of Sowing Rates on Yield of Two Buckwheat Varieties in Northern Hebei [J]. Crops, 2021, 37(5): 140-145.
[3] Duan Zhenying, Xu Xinyu, Li Xing, Li Zaifeng, Ma Jun, Yao Zhanjun. Leaf Rust Resistance Gene Analysis of 12 Wheat Cultivars in Main Producing Areas [J]. Crops, 2021, 37(5): 20-27.
[4] Wang Yun, Qiao Ling, Yan Suxian, Wu Bangbang, Zheng Xingwei, Zhao Jiajia. Analysis of the Yield Components and Drought Resistance of Dryland Wheat in Different Years from Shanxi Province [J]. Crops, 2021, 37(5): 43-49.
[5] Liu Xin, Yang Fang, Deng Junbo, Wang Aiai, He Nian, Chen Yan. Phenotypic Analysis and Comprehensive Evaluation of Soybean Strains in Jianghan Plain of China [J]. Crops, 2021, 37(5): 57-63.
[6] Weng Wenfeng, Wu Xiaofang, Zhang Kaixuan, Tang Yu, Jiang Yan, Ruan Jingjun, Zhou Meiliang. The Overexpression of FtbZIP5 Improves Accumulation of Flavonoid in the Hairy Roots of Tartary Buckwheat and Its Salt Tolerance [J]. Crops, 2021, 37(4): 1-9.
[7] Zhang Quanfang, Jiang Mingsong, Chen Feng, Zhu Wenyin, Zhou Xuebiao, Yang Lianqun, Xu Jiandi. Analysis of Genetic Diversity of Rice Varieties (Lines) in Shandong Province [J]. Crops, 2021, 37(4): 26-31.
[8] Du Xiaoyu, Li Nannan, Zou Shaokui, Wang Lina, Lü Yongjun, Zhang Qian, Li Shuncheng, Yang Guangyu, Han Yulin. Comprehensive Analysis of Main Traits of Newly Bred Wheat Varieties (Lines) in Southern Huang-Huai Region [J]. Crops, 2021, 37(4): 38-45.
[9] Jia Ruiling, Zhao Xiaoqin, Nan Ming, Chen Fu, Liu Yanming, Wei Liping, Liu Junxiu, Ma Ning. Genetic Diversity Analysis and Comprehensive Assessment of Agronomic Traits of 64 Tartary Buckwheat Germplasms [J]. Crops, 2021, 37(3): 19-27.
[10] Li Mengyu, Gao Chuang, Li Qiaoyun, Xu Kaige, Wang Siyu, Niu Jishan. Identification and Correlation Analysis of Wheat Cultivars (Lines) Resistance to Leaf Blight Caused by Bipolaris sorokiniana at Seedling Stage and Filling Stage [J]. Crops, 2021, 37(3): 40-45.
[11] Zhou Zhengping, Tian Baogeng, Chen Wanhua, Wang Ziyang, Yuan Wei, Liu Shiping. Effects of Different Tillage Methods and Straw Returning on Soil Nutrients and Wheat Yield and Quality [J]. Crops, 2021, 37(3): 78-83.
[12] Zhao Qingling, Lin Wen, Ren Aixia, Zhang Rongrong, Li Lei, Sun Min, Gao Zhiqiang. Effects of Topdressing in Spring on Population Construction and Grain Filling Process of Winter Wheat [J]. Crops, 2021, 37(3): 99-105.
[13] Jia Zimiao, Qiu Yuliang, Lin Zhishan, Wang Ke, Ye Xingguo. Research Progress on Wheat Improvement by Using Desirable Genes from Its Relative Species [J]. Crops, 2021, 37(2): 1-14.
[14] Liu Akang, Wang Demei, Wang Yanjie, Yang Yushuang, Ma Ruiqi, Gao Tiantian, Wang Yujiao, Kan Mingxi, Zhao Guangcai, Chang Xuhong. Effects of Seedling Regulation on Yield and Nitrogen Utilization of Late Sowing Wheat [J]. Crops, 2021, 37(2): 116-123.
[15] Yang Chongqing, Chang Keqin, Mu Lanhai, Du Yanping, Zhang Jiupan, Li Yaodong, Zhang Xiaojuan. Status and Trend Analysis of Buckwheat Variety Improvement and Industrial Development [J]. Crops, 2021, 37(2): 28-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!