Crops ›› 2021, Vol. 37 ›› Issue (3): 8-18.doi: 10.16035/j.issn.1001-7283.2021.03.002
Previous Articles Next Articles
Su Yang1(), Yang Jing2, Guo Yong2(), Du Weijun1(), Qiu Lijuan2()
[1] |
Hymowitz T . On the domestication of the soybean. Economic Botany, 1970,24(4):408-421.
doi: 10.1007/BF02860745 |
[2] | Meng L S, Wang Y B, Loake G J , et al. Seed embryo development is regulated via an AN3-MINI3 gene cascade. Frontiers in Plant Science, 2016,7:1645. |
[3] |
Meng L S, Xu M K, Wan W , et al. Integration of environmental and developmental (or metabolic) control of seed mass by sugar and ethylene metabolisms in Arabidopsis. Journal of Agricultural and Food Chemistry, 2018,66(13):3477-3488.
doi: 10.1021/acs.jafc.7b05992 |
[4] |
Pignocchi C, Minns G E, Nesi N , et al. ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. The Plant Cell, 2009,21(1):90-105.
doi: 10.1105/tpc.108.061812 |
[5] |
Jiang W B, Huang H Y, Hu Y W , et al. Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology, 2013,162(4):1965-1977.
doi: 10.1104/pp.113.217703 |
[6] |
Fang W, Wang Z, Cui R , et al. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. The Plant Journal, 2012,70(6):929-939.
doi: 10.1111/tpj.2012.70.issue-6 |
[7] |
Ohto M, Floyd S K, Fischer R L , et al. Effects of APETALA2 on embryo,endosperm,and seed coat development determine seed size in Arabidopsis. Sexual Plant Reproduction, 2009,22(4):277-289.
doi: 10.1007/s00497-009-0116-1 |
[8] |
Song X J, Huang W, Shi M , et al. A QTL for rice grain width and weight encodes a previously unknown RING type E3 ubiquitin ligase. Nature Genetics, 2007,39(5):623-630.
doi: 10.1038/ng2014 |
[9] | Liu J, Chen J, Zheng X , et al. GW5 acts in the brassinosteroid signalling pathway to regulate grain width and weight in rice. Nature Plants, 2017,3(5):1-7. |
[10] | Wu W, Liu X, Wang M , et al. A single-nucleotide polymorphism causes smaller grain size and loss of seed shattering during African rice domestication. Nature Plants, 2017,3(6):1-7. |
[11] | 陈强, 闫龙, 冯燕 等. 大豆百粒重QTL定位及多样性评价. 中国农业科学, 2016,49(9):1646-1656. |
[12] | 郭洁, 张继雨, 陈峰娜 等. 控制大豆油分含量和百粒重的QTL定位. 基因组学与应用生物学, 2017,36(7):2983-2988. |
[13] |
Dhungana S K, Kulkarni K P, Park C W , et al. Mapping quantitative trait loci controlling soybean seed starch content in an interspecific cross of 'Williams 82' (Glycine max) and 'PI 366121' (Glycine soja). Plant Breeding, 2017,136(3):379-385.
doi: 10.1111/pbr.2017.136.issue-3 |
[14] |
Liu D, Yan Y, Fujita Y , et al. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean. Breeding Science, 2018,68(4):442-448.
doi: 10.1270/jsbbs.17127 |
[15] |
Li J, Zhao J, Li Y , et al. Identification of a novel seed size associated locus SW9-1 in soybean. The Crop Journal, 2019,7(4):548-559.
doi: 10.1016/j.cj.2018.12.010 |
[16] |
Wang X, Li Y, Zhang H , et al. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean. Molecular Biology Reports, 2015,42(2):489-496.
doi: 10.1007/s11033-014-3792-3 |
[17] |
Lu X, Xiong Q, Cheng T , et al. A PP2C-1 allele underlying a quantitative trait locus enhances soybean 100-seed weight. Molecular Plant, 2017,10(5):670-684.
doi: 10.1016/j.molp.2017.03.006 |
[18] |
Li Y, Zhao S, Ma J , et al. Molecular footprints of domestication and improvement in soybean revealed by whole genome re-sequencing. BMC Genomics, 2013,14(1):1-12.
doi: 10.1186/1471-2164-14-1 |
[19] |
Li Y, Li D, Jiao Y , et al. Identification of loci controlling adaptation in Chinese soybean landraces via a combination of conventional and bioclimatic GWAS. Plant Biotechnology Journal, 2020,18(2):389-401.
doi: 10.1111/pbi.v18.2 |
[20] |
Sun X, Shantharaj D, Kang X , et al. Transcriptional and hormonal signaling control of Arabidopsis seed development. Current Opinion in Plant Biology, 2010,13(5):611-620.
doi: 10.1016/j.pbi.2010.08.009 |
[21] |
Savadi S . Molecular regulation of seed development and strategies for engineering seed size in crop plants. Plant Growth Regulation, 2018,84(3):401-422.
doi: 10.1007/s10725-017-0355-3 |
[22] |
Orozco-Arroyo G, Paolo D, Ezquer I , et al. Networks controlling seed size in Arabidopsis. Plant Reproduction, 2015,28(1):17-32.
doi: 10.1007/s00497-015-0255-5 pmid: 25656951 |
[23] |
Li N, Li Y . Signaling pathways of seed size control in plants. Current Opinion in Plant Biology, 2016,33:23-32.
doi: 10.1016/j.pbi.2016.05.008 |
[24] |
Du L, Li N, Chen L , et al. The ubiquitin receptor DA1 regulates seed and organ size by modulating the stability of the ubiquitin-specific protease UBP15/SOD2 in Arabidopsis. The Plant Cell, 2014,26(2):665-677.
doi: 10.1105/tpc.114.122663 |
[25] |
Li Y, Zheng L, Corke F , et al. Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana. Genes and Development, 2008,22(10):1331-1336.
doi: 10.1101/gad.463608 |
[26] |
Xia T, Li N, Dumenil J , et al. The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis. The Plant Cell, 2013,25(9):3347-3359.
doi: 10.1105/tpc.113.115063 |
[27] |
Liu S, Hua L, Dong S , et al. OsMAPK6,a mitogen-activated protein kinase,influences rice grain size and biomass production. The Plant Journal, 2015,84(4):672-681.
doi: 10.1111/tpj.2015.84.issue-4 |
[28] |
Ishimaru K, Hirotsu N, Madoka Y , et al. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nature Genetics, 2013,45(6):707-711.
doi: 10.1038/ng.2612 pmid: 23583977 |
[29] |
Wang S, Li S, Liu Q , et al. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015,47(8):949-954.
doi: 10.1038/ng.3352 |
[30] |
Wang S, Wu K, Yuan Q , et al. Control of grain size,shape and quality by OsSPL16 in rice. Nature Genetics, 2012,44(8):950-954.
doi: 10.1038/ng.2327 |
[31] |
Huang X, Qian Q, Liu Z , et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics, 2009,41(4):494-497.
doi: 10.1038/ng.352 |
[32] |
Zhong X, Dai X, Xv J , et al. Cloning and expression analysis of GmGAL1,SOC1 homolog gene in soybean. Molecular Biology Reports, 2012,39(6):6967-6974.
doi: 10.1007/s11033-012-1524-0 |
[33] |
Deshmukh R K, Vivancos J, Guérin V , et al. Identification and functional characterization of silicon transporters in soybean using comparative genomics of major intrinsic proteins in Arabidopsis and rice. Plant Molecular Biology, 2013,83(4/5):303-315.
doi: 10.1007/s11103-013-0087-3 |
[34] | 薛晨晨, 徐筋燕, 郭娜 等. 大豆GmGLDH基因的克隆,表达及生物信息学分析. 分子植物育种, 2019,17(6):1738-1745. |
[35] |
Brim C A, Cockerham C C . Inheritance of quantitative characters in soybeans. Crop Science, 1961,1(3):187-190.
doi: 10.2135/cropsci1961.0011183X000100030009x |
[36] |
Zhou Z, Jiang Y, Wang Z , et al. Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nature Biotechnology, 2015,33(4):408-414.
doi: 10.1038/nbt.3096 |
[37] |
Kulkarni K P, Patil G, Valliyodan B , et al. Comparative genome analysis to identify SNPs associated with high oleic acid and elevated protein content in soybean. Genome, 2018,61(3):217-222.
doi: 10.1139/gen-2017-0158 |
[1] | Li Qiong, Chang Shihao, Wu Tingting, Geng Zhen, Yang Qingchun, Shu Wentao, Li Jinhua, Zhang Donghui, Zhang Baoliang. Analysis of Genetic Diversity and Genetic Relationship for 120 Soybean Germplasms [J]. Crops, 2021, 37(4): 51-58. |
[2] | Chu Guanghong, Zhang Jianxin, Wang Cong, Zhao Zhanying. Effects of Topping at Different Nodes at Seedling Stage on Root Growth and Yield of High-Yield Spring Soybean [J]. Crops, 2021, 37(3): 195-201. |
[3] | Qin Ning, Li Junru, Li Wenlong, Du Hui, Li Xihuan, Zhang Caiying. Screening of Elite Germplasms and Identification of Seed Tocopherol and Its Component Contents in Soybean [J]. Crops, 2021, 37(3): 34-39. |
[4] | Li Candong, Guo Tai, Wang Zhixin, Zheng Wei, Zhao Haihong, Zhang Zhenyu, Xu Jiefei, Guo Meiling. Evaluation and Determination of Yield Evaluation Indicators of Soybean Mainly Cultivated Varieties in the Central and Eastern of Heilongjiang Province [J]. Crops, 2021, 37(2): 45-51. |
[5] | Wang Caijin, Di Wenjing, Ma Shumei, Wang Yang. Mining the Elite Allele of Resistance of Cercospora sojina Hara Race 1 in Soybean Resources [J]. Crops, 2020, 36(6): 189-196. |
[6] | Zhao Yuyang, Song Jian, Qiu Lijuan. Proteomic Comparation Analysis of Thylakoid in Leaves of G-Locus Near Isogenic Line in Soybean [J]. Crops, 2020, 36(6): 8-16. |
[7] | Zeng Yanhua, Xie Hexia, Jiang Yufeng, Zhou Jinguo, Xie Xiaodong, Zhou Haiyu, Tan Xianjie, Qin Lanqiu, Cheng Weidong. Genetic Diversity of Popcorn Landraces Based on SNP Markers [J]. Crops, 2020, 36(5): 65-70. |
[8] | Chang Shihao, Yang Qingchun, Shu Wentao, Li Jinhua, Li Qiong, Zhang Baoliang, Zhang Donghui, Geng Zhen. Comprehensive Analysis of Main Agronomic Traits of Summer Sowing Soybean Varieties (Lines) in Huang-Huai-Hai Region [J]. Crops, 2020, 36(3): 66-72. |
[9] | Xu Ran, Wang Caijie, Zhang Lifeng, Li Wei, Zhang Yanwei, Lin Yanhui, Li Weiu. The Breeding of Soybean Variety Qihuang 34 by Phenotypic Design Breeding Technology [J]. Crops, 2020, 36(3): 73-78. |
[10] | Huang Junxia,Huang Tian,Rao Demin,Zhang Minghao,Meng Fangang,Yan Xiaoyan,Zhang Wei. Effects of Water and Fertilizer Integration and Chemical Control Measures after Flowering on Soybean Yield and Physiological Characteristics [J]. Crops, 2020, 36(2): 82-87. |
[11] | Wang Mingyao,Cao Liang,Yu Qi,Zou Jingnan,He Songyu,Qin Bin,Wang Mengxue,Zhang Yuxian. Effects of Melatonin Soaking on Germination of Soybean Seeds under Saline-Alkali Stress [J]. Crops, 2019, 35(6): 195-202. |
[12] | Zhang Yongfang,Qian Xiaona,Wang Runmei,Shi Pengqing,Yang Rong. Identification of Drought Resistance of Different Soybean Materials and Screening of Drought Tolerant Varieties [J]. Crops, 2019, 35(5): 41-45. |
[13] | Liu Nianxi,Chen Liang,Li Zhi,Liu Baoquan,Liu Jia,Yi Zhigang,Dong Zhimin,Wang Shuming. Advances in Molecular Markers of Soybean Disease Resistance [J]. Crops, 2019, 35(4): 10-16. |
[14] | Yang Junkai,Shen Yang,Cai Xiaoxi,Wu Shengyang,Li Jianwei,Sun Mingzhe,Jia Bowei,Sun Xiaoli. Genome-Wide Identification and Expression Patterns Analysis of the PHD Family Protein in Glycine max [J]. Crops, 2019, 35(3): 55-65. |
[15] | Cai Dongfang,Zhang Shufen,Wang Jianping,Cao Jinhua,Wen Yancheng,Zhang Shufa,He Junping,Zhao Lei,Wang Dongguo,Zhu Jiacheng. Genetic Analysis of Rape Hybrid Fengyou No.10 Using SNP Chips [J]. Crops, 2019, 35(3): 80-85. |
|