Crops ›› 2020, Vol. 36 ›› Issue (2): 182-187.doi: 10.16035/j.issn.1001-7283.2020.02.028

Previous Articles     Next Articles

Genetic Analysis of Pathogenicity of Sexual Progeny of Magnaporthe oryzae

Zhang Xiaoyu,Zhang Yaling,Jin Xuehui(),Yan Tianyu,Zhao Ze   

  1. Heilongjiang Bayi Agricultural University/Heilongjiang Resistance of Plant Research Center, Daqing 163319, Heilongjiang, China
  • Received:2019-09-09 Revised:2019-11-29 Online:2020-04-15 Published:2020-04-13
  • Contact: Xuehui Jin E-mail:Jxh2686@163.com

Abstract:

To clarify the difference of avirulence/virulence in sexual progeny of Magnaporthe oryzae. The progeny population produced by the cross of the parental isolates HLJ6122 and KA3 were used as the test material. the virulence of the sexual progeny was analyzed by inoculating it into 14 single line resistant rice varieties. The results suggested that 64 progeny isolates showed significant virulence segregation and 53 virulence types appeared, the segregation ratios of avirulence/virulence were 1:1, 1:3, 3:1 and 15:1 on different rice varieties, respectively. Avirulence and virulence on rice varieties IRBLi-F5, IRBLta-K1, IRBL12-M, IRBLta2-Pi were controlled by a single gene and by 2 genes on varieties IRBLa-A, IRBLzt-T, IRBL7-W, IRBLkm-Ts, IRBL20-IR24. The segregation of avirulence/ virulence on IRBLk-Ka, IRBLz-Fu, IRBL19-M, IRBLb-B and IRBLkp-K60 in the 64 progeny isolates fit 1:3 ratio, but the avirulence and virulence of parental isolates to varieties was the same, it is therefore, difficult to judge the source of avirulence genes. The above results are of great significance to the localization and cloning of avirulence genes of Magnaporthe oryzae.

Key words: Magnaporthe oryzae, Sexual progeny, Avirulence gene, Genetic analysis

Table 1

Segregation of virulence between KA3 and HLJ6122 and their 64 progeny isolates on single-gene rice varieties"

水稻品种
Rice variety
抗性基因
Resistance gene
致病类型Pathotype
KA3 HLJ6122 后代菌株无毒性/毒性比
Progeny isolate avirulence/virulence
期望比
Expected ratio
χ2
IRBLa-A Pi-a A V 41∶23 3∶1 3.52
IRBLi-F5 Pi-i A V 35∶29 1∶1 0.39
IRBLk-Ka Pi-k A A 53∶10 3∶1 2.33
IRBLkp-K60 Pi-kp V V 9∶55 1∶3 3.52
IRBLz-Fu Pi-z A A 55∶9 3∶1 3.52
IRBLzt-T Pi-zt A V 38∶21 3∶1 2.99
IRBLta-K1 Pi-ta A V 37∶27 1∶1 1.27
IRBLb-B Pi-b A A 57∶7 15∶1 1.67
IRBL7-W Pi-7(t) A V 21∶41 1∶3 2.15
IRBL12-M Pi-12(t) A V 30∶33 1∶1 0.06
IRBL19-M Pi-19(t) A A 52∶12 3∶1 1.02
IRBLkm-Ts Pi-km A V 12∶51 1∶3 0.89
IRBL20-IR24 Pi-20 A V 21∶43 1∶3 1.69
IRBLta2-Pi Pi-ta2 A V 25∶39 1∶1 2.64

Table 2

Virulence separation of sexual progeny from the cross Magnaporthe oryzae HLJ6122 and KA3 on 14 rice varieties"

毒性类型
Virulence
type
水稻品种Rice variety 菌株数量
No. of
isolates
IRBLa-
A
IRBLi-
F5
IRBLk-Ka IRBLkp-
K60
IRBLz-
Fu
IRBLzt-
T
IRBLta-
K1
IRBLb-
B
IRBL7-
W
IRBL12-
M
IRBL19-
M
IRBLkm-
Ts
IRBL20-
IR24
IRBLta2-
Pi
KA3 A A A V A A A A A A A A A A -
HLJ6122 V V A V A V V A V V A V V V -
A1 V V A V A V V A V V A V V V 4
A2 A A A V A A A A V A A V V V 4
A3 V V V V V V V V V V V V V V 3
A4 A A A V A V A A A A A V V A 2
A5 A A A V A V A A V V A V V V 2
A6 V A A V A A A A A A A V V A 2

Table 3

Virulence separation of sexual progeny from the cross Magnaporthe oryzae HLJ6122 and KA3 on 4 rice varieties"

毒性类型
Virulence
type
水稻品种Rice variety 菌株数量
No. of
isolates
IRBLk-Ka IRBLz-Fu IRBLb-B IRBL19-M
KA3 A A A A -
HLJ6122 A A A A -
B1 A A A A 43
B2 A A A V 6
B3 V V V V 3
B4 A V A A 3
B5 V A A A 2

Table 4

Virulence separation of sexual progeny from the cross Magnaporthe oryzae HLJ6122 and KA3 on 9 rice varieties"

毒性类型Virulence type 水稻品种Rice variety 菌株数量
No. of isolates
IRBLa-A IRBLi-F5 IRBLzt-T IRBLta-K1 IRBL7-W IRBL12-M IRBLkm-Ts IRBL20-IR24 IRBLta2-Pi
KA3 A A A A A A A A A -
HLJ6122 V V V V V V V V V -
C1 V V V V V V V V V 12
C2 A A A A V A V V V 5
C3 A A V A V V V V V 2
C4 A A A A V A V A A 2
C5 A A V A A A V V A 2
C6 A A A A V V V A A 2
C7 V A A A A A V V A 2
[1] 马军韬, 张国民, 辛爱华 , 等. 不同遗传背景下稻瘟病菌致病性对比分析. 作物学报, 2015,41(12):1791-1801.
[2] 程式华, 李建 . 现代中国水稻. 北京:金盾出版社, 2007.
[3] Hebert T T . The perfect stage of Pyricularia grisea. Phytopathology, 1971,61(1):83-87.
[4] Kato H, Yamaguchi T . The perfect state of Pyricularia oryzae Cav. from rice plants in culture. Annals of the Phytopathological Society of Japan, 2009,48(4):607-612.
[5] 任世龙, 杨振立, 白辉 , 等. 谷瘟病菌交配型基因克隆和不同地区交配型基因检测. 华北农学报, 2018,33(3):56-62.
[6] Kang S, Sweigard J A, Valent B , et al. The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Molecular Plant Microbe Interactions, 1995,8:939-948.
[7] Sweigard J A, Carroll A M, Kang S , et al. Identification,cloning,and characterization of PWL2,a gene for host species specificity in the rice blast fungus. Plant Cell, 1995,7:1221-1233.
[8] Farman M L, Leong S A . Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea:Discrepancy between the physical and genetic maps. Genetics, 1998,150:1049-1058.
[9] Orbach M J, Farrall L, Sweigard J A , et al. A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell, 2000,12:2019-2032.
[10] Böhnert H U, Fudal I, Dioh W , et al. A putative polyketide synthase/peptide synthetase from Magnaporthe grisea signals pathogen attack to resistance rice. Plant Cell, 2004,16:2499-2513.
[11] Miki S, Matsui K, Kito H , et al. Molecular cloning and characteri- zation of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Molecular Plant Pathology, 2009,10:361-374.
[12] Yoshida K, Saitoh H, Fujisawa S , et al. Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell, 2009,21:1573-1591.
[13] Li W, Wang B, Wu J , et al. The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 2009,22:411-420.
[14] Wu J, Kou Y, Bao J , et al. Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice. New Phytologist, 2015,206(4):1463-1475.
[15] Zhang S L, Wang L, Wu W H , et al. Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib. Scientific Reports, 2015,5:11642.
[16] Takahashi M, Ashizawa T, Hirayae K , et al. One of two major paralogs of AVR-Pita1 is functional in Japanese rice blast isolates. Phytopathology, 2010,100(6):612-618.
[17] 刘俊峰, 董宁, 侯占军 , 等. 稻瘟菌对水稻品种梅雨明的无毒性的遗传分析和分子标记. 植物病理学报, 2001(1):10-15.
[18] Ma J H, Wang L, Feng S J , et al. Identification and fine mapping of AvrPi15,a novel avirulence gene of Magnaporthe grisea. Theoretical and Applied Genetics, 2006,113(5) : 875-883.
[19] 王艳丽 , Kaye C, Bordat A, 等. 稻瘟病菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位. 中国水稻科学, 2005,19(2):160-166.
[20] 王宝华 . 稻瘟病菌交配型鉴定及其有性后代的遗传分析. 福州:福建农林大学, 2001.
[21] 刘殿宇, 靳学慧, 于连鹏 , 等. 黑龙江省稻瘟病菌对主栽品种的致病性分析. 黑龙江八一农垦大学学报, 2018,30(1):8-11.
[22] 张亚玲, 王宝玉, 台莲梅 , 等. 黑龙江省稻瘟病菌生理小种对水稻品种致病性分析. 中国植保导刊, 2014,34(2):22-26.
[23] Flor, H H . Current status of the gene-for-gene concept. Annual Review of Phytopathology, 1971,9(1):275-296.
[24] Sasaki R . Existence of strains in rice blast fungus. Japanese Journal of Plant Protection, 1922,9:631-644.
[25] 陆凡, 郑小波, 王法明 , 等. 2个田间稻瘟病菌株杂交后代的致病性分离及其遗传学分析. 南京农业大学学报, 2000(4):41-45.
[26] 李进斌, 李成云, 罗朝喜 , 等. 稻瘟病菌二个无毒基因的初步分析. 云南农业大学学报(自然科学), 2002,17(4):328-330.
[27] 王艳丽 , Kaye C, Adreit H, 等. 稻瘟菌株CH63和TH16杂交后代毒性变异及其无毒基因组成. 中国农业科学, 2005,38(12):2428-2433.
[28] 冷祯陆 . 78份水稻制恢材料的抗瘟性、农艺性状及杂种优势评价. 雅安:四川农业大学, 2011.
[29] De Wit P J G M . Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annual Review of Phytopathology, 1992,30(1):391-418.
[30] Lau G W, Chao C T, Ellingboe A H . Interaction of genes controlling avirulence/virulence of Magnaporthe grisea on rice cultivar Katy. Phytopathology, 1993,83(4):375-382.
[31] Lawrence G J, Gme M, Shepherd K W . Interactions between genes controlling pathogenicity in the flax rust fungus. Phytopathology, 1981,71(1):12-19.
[32] Ellingboe A H . Segregation of avirulence/virulence on three rice cultivars in 16 crosses of Magnaporthe grisea. Phytopathology, 1992,82(5):597-601.
[1] Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang. Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers [J]. Crops, 2019, 35(1): 15-21.
[2] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[3] Xiaojuan Zhang,Fuping Zhou,Yizhong Zhang,Qiang Shao,Xinqi Fan,Yong Liu,Qingshan Liu. Study on Sterile Lines of Multiple Grain Sorghum [J]. Crops, 2017, 33(2): 72-75.
[4] Zhongnan Li,Kewei Wang,Yueren Wang,Shenghui Wu,Guangfa Li. Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335 [J]. Crops, 2016, 32(4): 101-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hou Qian,Wang Wanxing,Li Guangcun,Xiong Xingyao. Advances in the Research on Potato Continuous Cropping Obstacles[J]. Crops, 2019, 35(6): 1 -7 .
[2] Zhang Ting,Lu Lahu,Yang Bin,Yuan Kai,Zhang Wei,Shi Xiaofang. Comparative Analysis of Wheat Agronomic Traits in Four Provinces of Huanghuai Wheat Area[J]. Crops, 2019, 35(6): 20 -26 .
[3] Sun Yue,Liu Bin,Fu Manqi,Wang Jing,Wang Xiaohui,Chen Fu. Spatio-Temporal Dynamic Changes of Linseed Production in China from 1985 to 2015[J]. Crops, 2019, 35(6): 8 -13 .
[4] Zhu An,Gao Jie,Huang Jian,Wang Hao,Chen Yun,Liu Lijun. Advances in Morphology and Physiology of Root and Their Relationships with Grain Quality in Rice[J]. Crops, 2020, 36(2): 1 -8 .
[5] Zhang Xin,Cao Liru,Wei Liangming,Zhang Qianjin,Zhou Ke,Wang Zhenhua,Lu Xiaomin. Expression Analysis and Interaction Prediction of Maize Glucose Transporter Gene ZmGLUT-1[J]. Crops, 2020, 36(1): 22 -28 .
[6] Pan Lei,Xu Jie,Yang Shuai,Chen Yunsong,Chen Lianhong,Ma Wenguang. Pollen Viability, Morphology and Physiological Indexes of Three Tobacco Varieties at Different Storage Temperatures[J]. Crops, 2020, 36(2): 112 -118 .
[7] Yan Hua,Yan Zhongwen,Lei Jie. Climate Change Characteristics of Xinyuan during 1981-2018 and Its Impact on Spring Maize[J]. Crops, 2020, 36(2): 140 -146 .
[8] . [J]. Crops, 2020, 36(2): 200 -204 .
[9] Ma Hui,Jiao Xiaoyu,Xu Xue,Li Juan,Ni Dahu,Xu Rongfang,Wang Yu,Wang Xiufeng. Advances in Physiological and Molecular Mechanisms of Cadmium Metabolism in Rice[J]. Crops, 2020, 36(1): 1 -8 .
[10] Wang Meichun,Lian Rongfang,Xiao Gui,Mo Jinping,Cao Ning. Review and Industrial Development Countermeasures of Lentils in China[J]. Crops, 2020, 36(1): 13 -16 .