Crops ›› 2019, Vol. 35 ›› Issue (1): 15-21.doi: 10.16035/j.issn.1001-7283.2019.01.003

;

Previous Articles     Next Articles

Genetic Relationship of Xinong 979 and Thinopyrum ponticum Based on Pedigree Analysis and Molecular Markers

Narong Shi,Jingjing Li,Huiyu Wu,Daojie Sun,Yi Feng,Hui Wang,Xinlun Liu,Lingli Zhang   

  1. College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
  • Received:2018-10-23 Revised:2018-12-21 Online:2019-02-15 Published:2019-02-01
  • Contact: Lingli Zhang

Abstract:

Xinong 979 is a famous facultative cultivar with improved quality, high yield potential, and multi-resistance to various diseases, and has been widely extended in the southern Huanghuai Wheat Zone in China. Chromosome 7E of Thinopyrum ponticum carries Fusarium head blight (FHB) resistance gene (Fhb7), leaf rust resistance gene (Lr19) and stem rust resistance gene (Sr25). In this study, the pedigree and 7E chromosome molecular marker of Th. ponticum were used to analyze the genetic relationship among Xinong 979 and its 5 donor parents (Xiaoyan 6, Zaoyou 504, Shaan 229, Shaan 213, and Xinong 881), and Th. Ponticum. Pedigree analysis showed that the Xinong 979, Shaan 229, Shaan 213, and Xinong 881 were all derived from Xiaoyan 6. Xiaoyan 6 was a derivative from Th. ponticum. Six of 106 specific molecular markers of Th. ponticum chromosome 7E showed specific bands of Th. ponticum in Xinong 979 and Xiaoyan 6. Markers of Xwmc653 and Xwmc809 were located on 7ES 75.10-77.46cM; and Xcfd31 and Xgwm350 were located on 7ES 86.16-87.32cM; and Xmag1932 and Xdauk144 were located on 7EL 147.71-149.51cM. The results showed that Xinong 979 was a derivative from Xiaoyan 6. The study provides a reference for further research and utilization of Xinong 979.

Key words: Common wheat, Xinong 979, Thinopyrum ponticum, Genetic analysis

Table 1

7E chromosome molecular markers of Th. ponticum used in this study"

序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
1 Xbarc70 7ES USDA 54 Xpsp3003 7EL USDA
2 Xbarc76 7EL 55 Xpsp3123 7EL
3 Xbarc154 7ES 56 Xpsr121 7EL Ayala-Navarrete等[25]
4 XBE399084 7EL Ayala-Navarrete等[25] 57 Xpsr129 7EL
5 XBE404744 7EL 58 xsdauk107 7EL Guo等[8]
6 XBE406148 7EL 59 Xsdauk116 7EL
7 XBE445506 7EL 60 Xsdauk118 7EL
8 XBE445653 7EL 61 Xsdauk124 7EL
9 XBE489982 7EL 62 XsdauK13 7EL
10 XBE605194 7EL 63 XsdauK130 7EL
11 XBE637476 7EL 64 Xsdauk138 7EL
12 XBF145935 7EL 65 Xsdauk140 7EL
13 XBF200943 7EL 66 Xsdauk142 7EL
14 XBF483039 7EL 67 XsdauK144 7EL
15 XBG262436 7EL 68 Xsdauk159 7EL
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
序号
Code
标记
Marker
染色体臂
Chromosome arm
参考来源
Reference
16 XBG607810 7EL 69 Xsdauk165 7EL
17 XBM137749 7EL 70 XsdauK32 7EL
18 Xcfa2040 7EL USDA 71 Xsdauk336 7EL
19 Xcfa2049 7ES 72 Xsdauk339 7EL
20 Xcfa2106 7EL 73 Xsdauk340 7EL
21 Xcfa2174 7ES 74 xsdauk341 7EL
22 Xcfa2240 7EL 75 Xsdauk342 7EL
23 Xcfd14 7ES 76 XsdauK343 7EL
24 Xcfd21 7ES 77 Xsdauk343 7EL
25 Xcfd22 7ES 78 XsdauK345 7EL
26 Xcfd31 7ES 79 xsdauk345 7EL
27 Xcfd66 7EL 80 Xsdauk348 7EL
28 Xcfe100 7ES Zhang等[21] 81 Xsdauk350 7EL
29 Xcfe19 7EL 82 Xsdauk351 7EL
30 Xcfe202 7EL 83 XsdauK352 7EL
31 Xedm16 7ES Mullan等[20] 84 Xsdauk353 7EL
32 Xedm34 7ES 85 XsdauK355 7EL
33 Xedm105 7EL 86 Xsdauk356 7EL
34 Xedm109 7ES 87 XsdauK4 7EL
35 Xedm154 7ES 88 Xsdauk6 7EL
36 Xedm158 7EL 89 XsdauK60 7EL
37 Xedm335 7EL 90 XsdauK66 7EL
38 Xgwm130 7EL USDA 91 XsdauK71 7EL
39 Xgwm156 7ES 92 Xsdauk75 7EL
40 Xgwm295 7EL 93 Xsdauk8 7EL
41 Xgwm296 7EL 94 Xswes130 7ES Chen等[23]
42 Xgwm333 7EL 95 Xswes157 7EL
43 Xgwm350 7ES 96 Xswes19 7EL
44 Xgwm44 7ES 97 Xswes22 7ES
45 Xgwm471 7EL 98 Xswes354 7EL
46 Xgwm473 7EL 99 Xswes375 7EL
47 Xgwm635 7EL 100 Xswes376 7EL
48 Xksum052 7EL Yu等[22] 101 Xwmc273 7EL USDA
49 Xmag1759 7EL Xue等[24] 102 Xwmc606 7EL
50 Xmag1932 7EL 103 Xwmc653 7ES
51 Xmag2931 7ES 104 Xwmc809 7ES
52 Xmag2934 7ES 105 Xwmc83 7ES
53 Xmag3283 7ES 106 Xwmc702 7ES

Fig.1

Procedure for the pedigree of Xinong 979 and its main donor parents[15,26-28]"

Fig.2

Amplification in Xinong 979 and its donor parents with molecular markers"

Table 2

PCR fragment size of the markers on 7E chromosome identified in Th. ponticum, Xinong 979, and its donor parents"

标记
Marker
在染色体7E
上位置(cM)a
Position on 7E
扩增片段长度Fragment size (bp)
长穗偃麦草
Th. ponticum
西农979
Xinong 979
中国春
Chinese spring
小偃6号
Xiaoyan 6
早优504
Zaoyou 504
陕229
Shaan 229
陕213
Shaan 213
西农881
Xinong 881
Xwmc653 75.10 180 180 0b 180 180 180 0b 0b
Xwmc809 77.46 161 161 180 161 161 161 161 161
Xcfd31 86.16 236 236 234 236 236 234 136 236
Xgwm350 87.32 198 198 188 198 198 198 198 198
Xmag1932 147.71 2117 2117 2033 2117 2117 2033 2033 2117
XdauK144 149.51 1896, 1869 1896, 1869 1888 1896, 1869 0b 1896, 1869 1896 1896
[1] Li D Y, Li T H, Wu Y L , et al. FISH-based markers enable identification of chromosomes derived from tetraploid Thinopyrum elongatum in hybrid lines. Frontiers in Plant Science, 2018,9:526.
doi: 10.3389/fpls.2018.00526
[2] Dvořák J, Chen K C . Phylogenetic relationships between chromosomes of wheat and chromosome 2E of Elytrigia elongata. Canadian Journal of Genetics and Cytalogy, 1984,26(2):128-132.
doi: 10.1139/g84-021
[3] Liu Z, Li D Y, Zhang X Y . Genetic relationships among five basic genomes St,E,A,B and D in Triticeae revealed by genomic southern and in situ hybridization. Journal of Integrative Plant Biology, 2007,49(7):1080-1086.
doi: 10.1111/j.1672-9072.2007.00462.x
[4] Ayala-Navarrete L, Mechanicos A A, Gibson J M , et al. The Pontin series of recombinant alien translocations in bread wheat:single translocations integrating combinations of Bdv2,Lr19 and Sr25 disease-resistance genes from Thinopyrum intermedium and Th. ponticum. Theoretical and Applied Genetics, 2013,126(10):2467-2475.
doi: 10.1007/s00122-013-2147-0 pmid: 23807636
[5] Zheng Q, Lv Z L, Niu Z X , et al. Molecular cytogenetic characterization and stem rust resistance of five wheat-Thinopyrum ponticum partial amphiploids. Journal of Genetics and Genomics, 2014,41(11):591-599.
doi: 10.1016/j.jgg.2014.06.003 pmid: 25434682
[6] Shen X R, Kong L R, Ohm H . Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theoretical and Applied Genetics, 2004,108(5):808-813.
doi: 10.1007/s00122-003-1492-9 pmid: 14628111
[7] Shen X, Ohm H . Molecular mapping of Thinopyrum-derived Fusarium head blight resistance in common wheat. Molecular Breeding, 2007,20(2):131-140.
doi: 10.1007/s11032-007-9079-9
[8] Guo J, Zhang X L, Hou Y L , et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theoretical and Applied Genetics, 2015,128(11):2301-2316.
doi: 10.1007/s00122-015-2586-x pmid: 26220223
[9] Ceoloni C, Forte P, Gennaro A , et al. Recent developments in durum wheat chromosome engineering. Cytogenetic and Genome Research, 2005,109(1/2/3):328-344.
doi: 10.1159/000082416
[10] Li H, Wang X . Thinopyrum ponticum and Th.intermedium:the promising source of resistance to fungal and viral diseases of wheat. Journal of Genetics and Genomics, 2009,36(9):557-565.
doi: 10.1016/S1673-8527(08)60147-2 pmid: 19782957
[11] Zheng Q, Luo Q L, Niu Z X , et al. Variation in chromosome constitution of the Xiaoyan series partial amphiploids and its relationship to stripe rust and stem rust resistance. Journal of Genetics and Genomics, 2015,42(11):657-660.
doi: 10.1016/j.jgg.2015.08.004 pmid: 26674383
[12] 李振声 . 小麦远缘杂交新品种——小偃6号. 山西农业科学, 2017(5):30.
[13] Tao F, Wang J J, Guo Z F , et al. Transcriptomic analysis reveal the molecular mechanisms of wheat higher-temperature seedling-plant resistance to Puccinia striiformis f. sp. Tritici. Frontiers in Plant Science, 2018,9:240.
doi: 10.3389/fpls.2018.00240
[14] 李琼, 王长友, 刘新伦 , 等. 小偃6号及其衍生品种(系)遗传多样性的SSR分析. 麦类作物学报, 2008,28(6):950-955.
[15] 张玲丽, 孙道杰, 冯毅 , 等. 西农979抗赤霉病基因Fhb1的分子鉴定及其亲缘关系分析. 麦类作物学报, 2014,34(9):1199-1204.
doi: 10.7606/j.issn.1009-1041.2014.09.006
[16] Yang Y, Zhao X L, Xia L Q , et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats. Theoretical and Applied Genetics, 2007,115(7):971-980.
doi: 10.1007/s00122-007-0624-z pmid: 17712543
[17] 孙道杰, 张玲丽, 冯毅 , 等. 西农系列小麦骨干新品种赤霉病抗源浅析. 麦类作物学报, 2016,36(6):822-823.
doi: 10.7606/j.issn.1009-1041.2016.06.20
[18] Guo J, He F, Cai J J , et al. Molecular and cytological comparisons of chromosomes 7el(1),7el(2),7E(e),and 7E(i) derived from Thinopyrum. Cytogenetic and Genome Research, 2015,145(1):
68-74.
[19] Zhang X L, Shen X R, Hao Y Y , et al. A genetic map of Lophopyrum ponticum chromosome 7E,harboring resistance genes to Fusarium head blight and leaf rust. Theoretical and Applied Genetics, 2011,122(2):263-270.
doi: 10.1007/s00122-010-1441-3 pmid: 20830464
[20] Mullan D J, Platteter A, Teakle N L , et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome, 2005,48(5):811-822.
doi: 10.1139/g05-040 pmid: 16391687
[21] Zhang L Y, Bernard M, Leroy P , et al. High transferability of bread wheat EST-derived SSRs to other cereals. Theoretical and Applied Genetics, 2005,111(4):677-687.
doi: 10.1007/s00122-005-2041-5
[22] Yu J K, Dake T M, Singh S , et al. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome, 2004,47(5):805-818.
doi: 10.1139/g04-057 pmid: 15499395
[23] Chen H M, Li L Z, Wei X Y , et al. Development,chromosome location and genetic mapping of EST-SSR markers in wheat. Chinese Science Bulletin, 2005,50(20):2328-2336.
doi: 10.1360/982005-379
[24] Xue S L, Zhang Z Z, Lin F , et al. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags. Theoretical and Applied Genetics, 2008,117(2):181-189.
doi: 10.1007/s00122-008-0764-9 pmid: 18437345
[25] Ayala-Navarrete L, Bariana H S, Singh R P , et al. Trigenomic chromosomes by recombination of Thinopyrum intermedium and Th.ponticum translocations in wheat. Theoretical and Applied Genetics, 2007,116(1):63-75.
doi: 10.1007/s00122-007-0647-5 pmid: 17906848
[26] 裴阿卫, 王怡, 庞红喜 , 等. 强筋型优质小麦新品种陕253的选育研究(Ⅰ). 中国农学通报, 2004,20(4):101-103.
doi: 10.3969/j.issn.1000-6850.2004.04.035
[27] 张荣琦, 陈春环, 赵晓农 , 等. 利用远缘杂交技术选育小麦新品种之研究. 中国农学通报, 2006,22(6):186-188.
doi: 10.3969/j.issn.1000-6850.2006.06.044
[28] 宁锟, 王怡 . 陕229小麦新品种选育及其特性研究. 西北农业学报, 1996,5(2):15-18.
doi: 10.7606/j.issn.1004-1389.1996.2.003
[29] Cuthbert P A, Somers D J, Thomas J , et al. Fine mapping Fhb1,a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L.). Theretical and Applied Genetics, 2006,112(8):1465-1472.
doi: 10.1007/s00122-006-0249-7 pmid: 16518614
[30] 刘新伦, 王超, 牛丽华 , 等. 普通小麦-十倍体长穗偃麦草衍生新品种抗赤霉病基因的分子鉴别. 中国农业科学, 2017,50(20):3908-3917.
doi: 10.3864/j.issn.0578-1752.2017.20.007
[1] Li Zhang,Zantang Li,Shiyin Wang,Yanchao Ma,Yang Dongfang,Xueyong Li,Jiang Xu. Physiological and Genetic Analysis of Rice Mutant osnad1 Defective in Nitrogen Absorption [J]. Crops, 2018, 34(3): 68-76.
[2] Xiaojuan Zhang,Fuping Zhou,Yizhong Zhang,Qiang Shao,Xinqi Fan,Yong Liu,Qingshan Liu. Study on Sterile Lines of Multiple Grain Sorghum [J]. Crops, 2017, 33(2): 72-75.
[3] Zhongnan Li,Kewei Wang,Yueren Wang,Shenghui Wu,Guangfa Li. Genetic Analysis on Chlorophyll SPAD Value of Seedling Leaf in Maize Variety Xianyu 335 [J]. Crops, 2016, 32(4): 101-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .