Crops ›› 2025, Vol. 41 ›› Issue (3): 255-262.doi: 10.16035/j.issn.1001-7283.2025.03.035

Previous Articles    

Effects of Seed Sizes on Seed Germination, Seedling Characteristics and Drought Resistance of Dryland Wheat

Huang Ming1(), Fu Xinxin1(), Zhang Zhenwang1,2, Zhang Jun1, Li Youjun1   

  1. 1College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan,China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100083, China
  • Received:2024-03-18 Revised:2024-05-15 Online:2025-06-15 Published:2025-06-03

Abstract:

In order to investigate the effects of seed sizes on seed germination, seedling root traits and leaf physiological characteristics and drought resistance of wheat, a hydroponic experiment was conducted. Large grain (> 6-mesh sieve, particle size > 3.35 mm), medium grain (6-8-mesh sieve, particle size 2.36-3.35 mm) and small grain (< 8-mesh sieve, grain size < 2.36mm) of Luohan 6 and Luohan 22 were selected and used as materials. Two water levels of 20% PEG-6000 simulated drought for T treatment and normal water supply for CK were conducted under hydroponic condition. The characteristics of seed germination, and the root characteristics, antioxidant enzyme system and osmotic regulation substances in seedlings at 3, 6, and 9 days after treatments were determined. The results showed that the germination potential and germination rate of large seeds were significantly increased by 7.2% and 12.4% for Luohan 22 under T treatment, and 42.0% and 36.7% for Luohan 6 under CK, but there was no significant advantage in medium seeds compared with small seeds. Compared with small seeds, the root activity of large seeds of Luohan 6 under drought and control all increased at three and six days after treatment, but there was no significant difference in Luohan 22. With the increase of seed size, the root length, root surface area, root volume, the number of root tips and branches increased significantly; and the activities of superoxide dismutase (SOD) and catalase (CAT) and the content of soluble sugar (SS) in seedling leaves showed an increasing trend, while the content of malondialdehyde (MDA) and free proline (Pro), showed a decreasing trend. Compared with small seeds, the SOD activity of large seeds under T treatment was significantly increased, the CAT activity under CK and the content of SS under T treatment was increased in Luohan 6, and the MDA and Pro contents of Luohan 22 under CK were all decreased; Compared with medium and small seeds, the comprehensive drought resistance coefficients of the two wheat varieties were all increased. Overall, large seeds have major advantages in terms of germination, seedling roots, and stress resistance; however, the impacts differed based on drought stress, variety, and measurement indexes. Screening and planting large-size seeds is beneficial for improving the germination of dryland wheat seeds and the indexes of seedling development.

Key words: Wheat, Seed size, Seedling, Root, Physiological characteristic, Drought resistance

Table 1

Effects of seed size on germination potential and germination rate of wheat %"

品种
Variety
种子大小
Seed size
发芽势Germination potential 发芽率Germination rate
T CK T CK
洛旱6号Luohan 6 30.00±3.78Aa 81.90±4.12Ab 58.57±5.15Aa 92.86±2.86Ab
25.71±5.71Aa 74.76±7.33Ab 51.90±3.30Aa 86.67±4.36Bb
23.81±1.65Aa 40.95±3.30Bb 41.90±3.60ABa 56.19±0.82Cb
洛旱22 Luohan 22 38.57±2.86Aa 59.52±4.36Ab 57.14±1.43Aa 85.71±1.43Ab
28.57±7.14Ba 54.29±8.92Ab 40.95±8.61Ba 80.95±6.75Ab
31.40±2.86Ba 52.38±5.02Ab 44.70±7.87Ba 82.86±2.47Ab

Fig.1

Effects of seed size on root activity of wheat seedlings Different capital letters indicate significant differences in seed sizes under the same treatment in the same measuring period; different lowercase letters indicate significant differences under different treatments under the same seed size in the same measuring period (P < 0.05). The same below."

Table 2

Effect of seed size on root traits of wheat seedling"

指标
Index
处理
Treatment
天数
Days (d)
洛旱6号Luohan 6 洛旱22 Luohan 22
总根长
Total root length (cm)
T 4 335.6±4.2Ab 208.3±9.4Bb 152.4±13.6Cb 289.5±20.4Ab 190.8±12.7Bb 128.0±16.4Cb
8 454.2±16.3Ab 347.0±21.2Bb 201.7±5.7Cb 417.6±13.0Ab 299.6±22.6Bb 212.6±5.7Ca
CK 4 557.4±8.4Aa 406.9±4.9Ba 314.2±12.6Ca 457.5±26.4Aa 370.3±15.1Ba 257.5±6.0Ca
8 759.4±15.0Aa 573.8±47.0Ba 392.8±11.0Ca 558.8±23.7Aa 462.2±18.5Ba 291.5±47.3Ca
总根表面积
Total root surface
area (cm2)
T 4 27.3±1.6Ab 17.7±0.8Bb 13.8±0.2Cb 28.6±2.3Ab 16.7±0.6Bb 10.2±1.3Cb
8 40.2±1.1Ab 34.4±3.3Bb 20.4±0.3Cb 39.9±4.1Aa 28.6±3.0Ba 21.1±1.0Ca
CK 4 40.8±2.3Aa 30.1±0.9Ba 24.4±2.6Ca 33.9±0.6Aa 28.0±0.7Ba 20.7±1.7Ca
8 56.0±5.1Aa 45.0±4.2Ba 30.2±1.8Ca 47.8±3.1Aa 35.7±4.4Ba 23.3±5.1Ca
根直径
Root diameter (mm)
T 4 0.32±0.03Aa 0.30±0.03Aa 0.28±0.01Aa 0.28±0.02Aa 0.29±0.02Aa 0.25±0.02Aa
8 0.33±0.00Aa 0.30±0.01Ba 0.27±0.01Ca 0.33±0.02Aa 0.28±0.01Ba 0.32±0.02Aa
CK 4 0.25±0.01Ab 0.23±0.01Ab 0.23±0.01Ab 0.26±0.00Aa 0.26±0.01Aa 0.23±0.01Ba
8 0.23±0.02Ab 0.25±0.01Ab 0.23±0.00Ab 0.26±0.01Ab 0.26±0.01Aa 0.23±0.01Bb
总根体积
Total root volume (cm3)
T 4 0.18±0.03Aa 0.13±0.02Ab 0.13±0.03Aa 0.20±0.03Aa 0.14±0.03Aa 0.07±0.01Bb
8 0.29±0.00Ab 0.25±0.01Ba 0.16±0.01Ca 0.33±0.03Aa 0.20±0.02Ba 0.17±0.02Ba
CK 4 0.24±0.02Aa 0.17±0.01Ba 0.15±0.03Ba 0.20±0.02Aa 0.15±0.02Ba 0.15±0.02Ba
8 0.36±0.02Aa 0.28±0.03Ba 0.19±0.02Ca 0.32±0.03Aa 0.23±0.03Ba 0.15±0.03Ca
总根尖数Total root tips T 4 460.3±44.1Ab 385.7±8.7ABb 318.3±50.7Ba 445.0±77.5Ab 292.7±38.0Bb 230.3±30.2Bb
8 1076.0±9.4Ab 703.3±163.6Ba 473.0±137.3Ba 1009.0±20.2Ab 592.3±215.5Ba 349.7±36.7Bb
CK 4 919.7±38.6Aa 728.3±26.6Ba 431.3±53.1Ca 725.3±56.6Aa 611.7±26.2Aa 460.3±58.0Ba
8 1562.7±87.2Aa 978.0±88.8Ba 766.3±110.6Ba 1471.0±84.1Aa 950.3±155.3Ba 674.0±21.7Ca
根分枝数
Number of root branches
T 4 909.3±71.3Ab 564.7±65.2Bb 402.0±136.1Ba 656.3±32.2Ab 467.3±73.7Bb 399.0±55.1Ba
8 1849.3±49.8Aa 1151.3±90.4Bb 510.3±43.7Cb 1388.3±128.4Ab 1172.7±105.8Aa 659.7±115.6Ba
CK 4 1469.0±126.9Aa 1010.3±7.6Ba 606.3±62.5Ca 1150.0±122.5Aa 805.0±66.6Ba 490.7±57.2Ca
8 2639.0±525.2Aa 1915.0±316.1ABa 1154.7±64.4Ba 1835.0±37.5Aa 1485.7±247.2Aa 829.3±110.8Ba

Fig.2

Effects of seed size on SOD, CAT activities and MDA contents in wheat seedling leaves"

Fig.3

Effects of seed sizes on SS and Pro contents in wheat seedling leaves"

Table 3

Effects of seed size on drought resistance coefficient and comprehensive drought resistance coefficient in wheat during the germination and seedling stages"

指标Index 洛旱6号 Luohan 6 洛旱22 Luohan 22
发芽率Germination rate 0.63 0.60 0.75 0.67 0.51 0.54
发芽势Germination energy 0.37 0.34 0.58 0.65 0.53 0.60
根系活力Root activity 1.25 1.18 1.20 1.45 1.43 1.12
总根长度Total root length 0.60 0.57 0.50 0.71 0.60 0.65
总根表面积
Total root surface area
0.74 0.68 0.63 0.88 0.61 0.78
根直径Root diameter 0.33 0.30 0.27 0.31 0.28 0.30
总根体积Total root volume 0.25 0.21 0.15 0.28 0.18 0.13
总根尖数Total root tips 0.63 0.66 0.66 0.66 0.58 0.51
根分枝数
Number of root branches
0.67 0.59 0.52 0.69 0.72 0.80
SOD活性SOD activity 0.69 0.83 0.73 0.79 0.58 0.69
CAT活性CAT activity 0.40 0.44 0.55 0.46 0.41 0.52
MDA含量MDA content 1.31 1.48 1.30 1.46 1.46 1.44
SS含量SS content 0.44 0.38 0.44 0.52 0.52 0.61
Pro含量Pro content 3.20 2.77 2.97 5.27 4.07 3.88
综合抗旱系数
Comprehensive drought
resistance coefficient
11.51 11.02 11.24 14.80 12.47 12.57
[1] Lobell B D, Schlenker W, Costa-Roberts J. Climate trends and global crop production since 1980. Science, 2011, 333(6042):616-620.
doi: 10.1126/science.1204531 pmid: 21551030
[2] 王德铭. 作物良种在农业生产中的地位和作用. 中国农业信息, 2015, 178(13):36.
[3] 张世挺, 杜国祯, 陈家宽, 等. 不同营养条件下24种高寒草甸菊科植物种子重量对幼苗生长的影响. 生态学报, 2003, 23(9):1737-1744.
[4] Swanborough P, Westoby M. Seedling relative growth rate and its components in relation to seed size: phylogenetically independent contrasts. Functional Ecology, 1996, 10(2):176-184.
[5] 刘斌祥, 程秋博, 周芳, 等. 种子大小与播种深度对玉米出苗、苗期光合特性与保护酶活性的影响. 华北农学报, 2020, 35(2):98-106.
doi: 10.7668/hbnxb.20190319
[6] 陈思晓, 贾俊娟, 傅兆麟, 等. 小麦品种内种子大小分级与种子质量的关系. 浙江农业科学, 2020, 61(4):624-629.
doi: 10.16178/j.issn.0528-9017.20200405
[7] 马秀云, 赵鹏, 程明珠, 等. 小麦粒重与幼苗根系生长发育的关系. 麦类作物学报, 2023, 43(5),632-639.
[8] 刘生祥, 宋晓华. 春小麦种子大小对主要性状及产量的影响. 种子, 2003(1):29-30.
[9] 毛思帅, 周吉红, 王俊英, 等. 冬小麦种子大小对群体指标和产量的影响. 作物杂志, 2015(3):161-163.
[10] 崔俊美, 张朝明, 张怀渝, 等. 7个小麦品种的抗旱性比较. 麦类作物学报, 2015, 35(11):1542-1550.
[11] 王志伟, 王志龙, 乔祥梅, 等. 云南小麦品种(系)萌发期抗旱性评价. 作物研究, 2022, 36(4):300-306.
[12] Zhang X, Huang G, Bian X, et al. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environment, 2013, 59(2):80-88.
[13] 李小芳, 张志良. 植物生理学实验指导:第五版. 北京: 高等教育出版社, 2017.
[14] 赵平, 韩杰, 张从宇, 等. 不同基因型小麦对干旱胁迫响应的差异研究. 种子, 2011, 30(2):25-29.
[15] 张军, 鲁敏, 孙树贵, 等. 拔节期低温胁迫对小麦生理生化特性和产量的影响. 西北农业学报, 2014, 23(2):73-79.
[16] 王方琳, 柴成武, 尉秋实, 等. 沙埋和种子大小对沙蒿种子萌发及幼苗生长的影响. 西北林学院学报, 2020, 35(6):129-134.
[17] 吴薇. 不同粒重春小麦种子活力差异的研究. 乌鲁木齐:新疆农业大学, 2016.
[18] 周芳, 程秋博, 金容, 等. 种子大小与播种深度对川中丘陵区玉米根系生长的影响. 中国生态农业学报, 2019, 27(12):1799-1811.
[19] Kennedy P G, Hausmann N J, Wenk E H, et al. The importance of seed reserves for seedling performance: an integrated approach using morphological, physiological, and stable isotope techniques. Oecologia, 2004, 141(4):547-554.
pmid: 15338415
[20] 刘艳江, 何选泽, 叶红环, 等. 合江方竹种子大小变异对萌发及幼苗生长的影响. 种子, 2022, 41(4):111-115,149.
[21] 何建社, 张利, 刘千里, 等. 岷江干旱河谷区典型灌木对干旱胁迫的生理生化响应. 生态学报, 2018, 38(7):2362-2371.
[22] Sun W H, Wu Y Y, Wen X Y, et al. Different mechanisms of photosynthetic response to drought stress in tomato and violet ophragmus. Phtotsynthetica, 2016, 54(2):226-233.
[23] 许彩丽, 周易籼森, 谢乔颖, 等. 干旱胁迫对箭叶淫羊藿生理生化的影响. 湖南林业科技, 2020, 47(5):20-24,41.
[24] Abraham B. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant,Cell & Environment, 2017, 40(1):4-10.
[25] 常云霞, 李姿琳, 李芙蓉. IAA对Cd2+胁迫下拟南芥渗透调节物质及抗氧化特性的影响. 周口师范学院学报, 2018, 35(5):79-82,133.
[26] 王威, 胡海银. 玉米籽粒大小与其植株内源保护酶活性及单株种子产量的关系. 甘肃农业大学学报, 2013, 48(4):44-48.
[27] Lebrija-Trejos E, Reich P B, Hernández A, et al. Species with greater seed mass are more tolerant of conspecific neighbours: a key driver of early survival and future abundances in a tropical forest. Ecology Letters, 2016, 19(9):1071-1080.
doi: 10.1111/ele.12643 pmid: 27346439
[28] 闫兴富, 邓晓娟, 王静, 等. 种子大小和干旱胁迫对辽东栎幼苗生长和生理特性的影响. 应用生态学报, 2020, 31(10):3331-3339.
doi: 10.13287/j.1001-9332.202010.006
[1] Hou Yue, Wang Hongliang, Li Jie, Li Chunjie, Chen Fanjun. Research Advances on the Effects of Cereal/Legume Forage Intercropping on Forage Quality and Nitrogen Uptake [J]. Crops, 2025, 41(3): 1-10.
[2] He Yunxia, Ma Jianhui, Zhang Daijing, Liu Donghua, Chao Xiaoyan, Chen Huiping, Li Chunxi. Study on the Effect of Different Nitrogen Fertilizer Synergists on Reducing Gaseous Nitrogen Loss and Increasing Yield in Wheat Field of Northern Henan [J]. Crops, 2025, 41(3): 108-115.
[3] Wang Jiatong, Ma Yingchen, Feng Yanfei, Lu Jiahui, Guo Zhenqing, Li Xueli, Li Yun, Han Yucui, Lin Xiaohu. Effects of Reduction of Nitrogen Topdressing Application on Phosphorus and Potassium Fertilizer Utilization and Quality of Spring Wheat in Eastern Hebei Province [J]. Crops, 2025, 41(3): 141-148.
[4] Li Jiahao, Jia Yonghong, Lian Shihao, Liu Yue, Yu Shan, Tian Wenqiang, Wang Ziqian, Zhang Jinshan, Shi Shubing. Effects of Prohexadione-Calcium and Phosphorus Application Rate on the Growth, Dry Matter Accumulation, and Yield of Winter Wheat [J]. Crops, 2025, 41(3): 165-171.
[5] Liang Hui, Zhang Jianxin, Xue Lihua, Jia Keke. Effects of Drip Irrigation Amount on Root Growth and Yield of Xinnongdou 2 under the Condition of the Postpone of Water and Nitrogen [J]. Crops, 2025, 41(3): 233-240.
[6] Fan Ming, Li Hongxia, Wang Ke, Tang Huali, Yang Le, Li Qianrong, Ye Xingguo, Zhang Shuangxi. Breeding and Cultivation Techniques of a New Wheat Variety Ningchun 66 with Powdery Mildew Resistance [J]. Crops, 2025, 41(3): 249-254.
[7] Xu Lang, Wang Yu, Wang Xiangru, Li Hongjun, Tang Wan, Wang Bingqing, Yang Qiang, Zhang Fan, Chen Zhiyuan, Zhou Meiliang. Study on the Flavonoids Content Changes and Utilization Guidance in Storage and Processing of Tartary Buckwheat [J]. Crops, 2025, 41(3): 85-91.
[8] Tian Wenqiang, Wang Hongyi, Nie Lingfan, Sun Ganggang, Zhang Jun, Zhang Qiangbin, Yu Shan, Li Jiahao, Zhang Jinshan, Shi Shubing. The Effects of Sowing Date and Sowing Rate on the Growth, Dry Matter Accumulation and Yield of Extremely Late-Sown Wheat Population [J]. Crops, 2025, 41(2): 115-122.
[9] Zhao Yuanling, Tan Weiwei, Liu Zhaojun, Li Tie, Li Dongmei, Sun Minglong, Gao Fengmei, Wang Yongbin. Cultivation of New Wheat Lines with Low Lipoxygenase (LOX) Activity and Storage Tolerance by Anther Culture Technology [J]. Crops, 2025, 41(2): 40-46.
[10] Zhao Lingling, Li Guifang, Cheng Chu, Zheng Mingjie, Hu Min, Zhu Jianfeng, Shen Ayi, Shen Aga, Wang Junzhen, Shao Meihong. Preliminary Report on Introduction Experiment of New Buckwheat Varieties in Zhejiang Province [J]. Crops, 2025, 41(2): 86-92.
[11] Lou Hongyao, Li Hanlin, Qin Zhilie, Qumanguli∙Kuerban , Zhu Minghui, Liu Changwen, Zhang Shengquan. Research Progress on Fertility Restoration of Photoperiod- Thermo-Sensitive Male-Sterile Wheat [J]. Crops, 2025, 41(2): 9-13.
[12] Mi Dongming, Zhou Zuoyan, Zhang Xiaoyan, Fan Zhenjie, Sun Peijie, Huang Xiao, Ren Aixia, Sun Min, Ren Yongkang. Effects of Nitrogen Application Rate on Matter Transfer and Protein Content in Black Wheat [J]. Crops, 2025, 41(2): 155-161.
[13] Zhang Jiazhi, Zhao Yuhan, Ding Junjie, Yao Liangliang, Qiu Lei, Zhang Maoming, Wang Zijie, Gao Xuedong, Huang Chengliang, Cui Shize, Yang Xiaohe. Effects of “Double-Exemption Dense Seedling” Technique on Seedling Quality and Enzyme Activity of Rice in Cold Region [J]. Crops, 2025, 41(2): 109-114.
[14] Liu Peiyao, Ran Liping, Yang Jiaqing, Wang Haibo, Xiong Fei, Yu Xurun. Research Progress on Morphogenesis, Physiological Characteristics, and Its External Influencing Factors in Wheat Spike [J]. Crops, 2025, 41(1): 1-9.
[15] Jing Maoya, Zhang Ziyu, Zhang Meng, He Jiamin, Yan Fanfan, Gao Yanmei, Zhang Yongqing. Effects of Seed Soaking with Salicylic Acid on Seed Germination and Seedling Growth of Quinoa under Salt Stress [J]. Crops, 2025, 41(1): 194-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!