Crops ›› 2025, Vol. 41 ›› Issue (1): 194-201.doi: 10.16035/j.issn.1001-7283.2025.01.024

;

Previous Articles     Next Articles

Effects of Seed Soaking with Salicylic Acid on Seed Germination and Seedling Growth of Quinoa under Salt Stress

Jing Maoya1(), Zhang Ziyu1, Zhang Meng1, He Jiamin1, Yan Fanfan1, Gao Yanmei1(), Zhang Yongqing1,2()   

  1. 1College of Life Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
    2College of Geography Science, Shanxi Normal University, Taiyuan 030031, Shanxi, China
  • Received:2023-12-20 Revised:2024-04-05 Online:2025-02-15 Published:2025-02-12

Abstract:

In order to investigate the alleviating mechanism of seed soaking with salicylic acid on salt-induced inhibition of seed germination and seedling growth in quinoa (Chenopodium quinoa Willd.), Longli 1 (salt- sensitive) and Longli 4 (salt-tolerant) were used as experimental materials to study the effects of different concentrations (0, 0.10, 0.25, 0.50, 1.00 mmol/L) of salicylic acid on seed germination, seedling growth, and physiology under 200 mmol/L NaCl moderate salt stress. The results showed that the seed germination rates of both quinoa varieties significantly decreased under salt stress, and the growth of seedlings were inhibited. After treatmenting with salicylic acid, the negative effects caused by salt stress were significantly alleviated, the germination rates, germination vigor, and germination indexes were significantly increased after soaking treatments, and effectively promoted seed germination. Furthermore, the seedling growth parameters of two quinoa varieties, aboveground dry weight, antioxidant enzyme activity, osmoregulatory substances, chlorophyll content, and root activity all exhibited a trend of first rising and then falling as the salicylic acid soaking concentration increased. The MDA content first decreased and then increased with the increasing of salicylic acid soaking concentration. It was discovered that the optimal concentration of 0.25 mmol/L salicylic acid for seed soaking had the best regulatory effect on Longli 1 under salt stress, while the optimal concentration of 0.10 mmol/L salicylic acid for seed soaking had the best regulatory effect on Longli 4 under salt stress.

Key words: Quinoa, Seed soaking with salicylic acid, Salt stress, Seed germination, Seedling growth

Table 1

The effects of salicylic acid soaking seeds on the germination of quinoa seeds under salt stress"

品种
Variety
处理
Treatment
发芽率
Germination
rate (%)
发芽势
Germination
vigor (%)
发芽指数
Germination
index
L1 CK 92.2±0.0ab 88.7±0.0a 68.2±3.6a
S1 85.0±0.0de 82.3±0.0b 59.3±4.4a
S2 88.9±0.0bc 86.7±0.0a 61.8±3.9a
S3 92.7±0.0a 90.7±0.0a 73.6±5.9a
S4 87.8±0.0cd 87.3±0.0a 60.8±1.6a
S5 83.9±0.0e 81.0±0.0b 58.3±1.4a
L4 CK 95.6±0.0a 92.7±0.0a 72.2±1.6a
S1 88.9±0.0b 87.7±0.0b 60.2±1.1b
S2 96.1±0.0a 93.3±0.0a 72.7±4.6a
S3 91.7±0.0b 89.3±0.0b 68.5±1.9ab
S4 88.9±0.0b 87.3±0.0b 59.0±0.6b
S5 80.0±0.0c 79.0±0.0c 47.9±1.4c

Table 2

Effects of salicylic acid soaking seeds on plant height and root length of quinoa under salt stress cm"

品种Variety 处理Treatment 株高Plant height 根长Root length
L1 CK 20.5±0.3a 11.3±0.4b
S1 17.1±0.7b 13.3±0.3ab
S2 20.1±0.3a 14.5±0.5a
S3 21.4±0.6a 15.7±0.3a
S4 19.3±0.5ab 14.4±1.1a
S5 17.1±1.0b 11.6±0.3b
L4 CK 23.0±0.9a 8.3±0.2d
S1 18.3±0.7b 10.7±0.3c
S2 23.3±0.6a 13.6±0.5a
S3 21.2±0.7ab 12.2±0.2b
S4 18.1±1.1b 10.5±0.4c
S5 12.5±0.6c 7.1±0.4d

Fig.1

Effects of salicylic acid soaking seeds on the aboveground dry weight of quinoa under salt stress Different lowercase letters indicate significant difference at P < 0.05 level. The same below."

Fig.2

Effects of salicylic acid soaking seeds on antioxidant enzyme activity of quinoa seedlings under salt stress"

Fig.3

Effects of salicylic acid soaking seeds on MDA content of quinoa seedlings under salt stress"

Fig.4

Effects of salicylic acid soaking seeds on osmotic regulating substances of quinoa seedlings under salt stress"

Fig.5

Effects of salicylic acid soaking seeds on chlorophyll content in leaves of quinoa seedlings under salt stress"

Fig.6

Effects of salicylic acid soaking seeds on root activity of quinoa seedlings under salt stress"

[1] 王佳丽, 黄贤金, 钟太洋, 等. 盐碱地可持续利用研究综述. 地理学报, 2011, 66(5):673-684.
[2] 朱建峰, 崔振荣, 吴春红, 等. 我国盐碱地绿化研究进展与展望. 世界林业研究, 2018, 31(4):70-75.
[3] Sushma S, Vikram S, Hemender T. Impact of high temperature on germination, seedling growth and enzymatic activity of wheat. Agriculture, 2022, 12(9):1500.
[4] 张蕊, 邓文亚, 杨柳, 等. 盐胁迫下甘蓝型油菜发芽期下胚轴和根长的全基因组关联分析. 中国农业科学, 2017, 50(1):15-35.
doi: 10.3864/j.issn.0578-1752.2017.01.002
[5] Wu L M, Yang H N, Li Z R, et al. Effects of salinity-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crus-galli (L.) Beauv. Agronomy, 2022, 12(5):1193.
[6] 黄勇, 郭猛, 张红瑞, 等. 盐胁迫对石竹种子萌发和幼苗生长的影响. 草业学报, 2020, 29(12):105-111.
doi: 10.11686/cyxb2020027
[7] 李美凤, 刘雨诗, 王丽姣, 等. 不同产地藜麦籽氨基酸组成及其营养价值评价. 食品工业科技, 2019, 40(18):289-292,308.
[8] 王黎明, 马宁, 李颂, 等. 藜麦的营养价值及其应用前景. 食品工业科技, 2014, 35(1):381-384,389.
[9] 文莉芳, 杨超, 张学俭, 等. 不同产地白色藜麦营养成分及氨基酸含量评价. 食品与发酵工业, 2024, 50(19):257-264.
doi: 10.13995/j.cnki.11-1802/ts.037339
[10] 赵红梅, 邓素芳, 杨艳君, 等. 干旱胁迫对藜麦幼苗组织解剖结构和生理特性的影响. 核农学报, 2021, 35(6):1476-1483.
doi: 10.11869/j.issn.100-8551.2021.06.1476
[11] Shitikova A V, Kukharenkova O V, Khaliluev M R. The crop production capacity of quinoa (Chenopodium quinoa Willd.)—A new field crop for russia in the non-chernozem zone of moscow’s urban environment. Agronomy, 2022, 12(12):3040.
[12] 冯垚, 赵颖, 魏小红. NO对不同盐碱胁迫下藜麦幼苗生长及氮代谢的影响. 草业科学, 2023, 40(9):2320-2329.
[13] 杨钊, 刘文瑜, 黄杰, 等. 基于主成分分析和聚类分析综合评价不同品种藜麦在黄土高原地区种植的适宜性. 江苏农业科学, 2023, 51(24):21-32.
[14] 王建, 赵牡丹, 樊艺, 等. 黄土高原人类活动与生物多样性的演变及关联性. 水土保持研究, 2022, 29(6):154-160.
[15] 刘淑丽, 张瑞, 王洋, 等. 外源物质对水稻盐胁迫缓解效应研究进展. 中国水稻科学, 2023, 37(1):1-15.
doi: 10.16819/j.1001-7216.2023.220404
[16] Jiang B, Liu R L, Fang X J, et al. Effects of salicylic acid treatment on fruit quality and wax composition of blueberry (Vaccinium virgatum Ait). Food Chemistry, 2021(5):130757.
[17] 张适阳, 刘凤民, 崔均涛, 等. 三种外源物质对低温胁迫下柱花草生理与荧光特性的影响. 草业学报, 2023, 32(6):85-99.
doi: 10.11686/cyxb2022322
[18] Siddique A, Kumar P. Physiological and biochemical basis of pre-sowing soaking seed treatment-an overview. Plant Archives, 2018, 18(2):1933-1937.
[19] 连鹤娜, 李春杰. 水杨酸浸种对盐胁迫下醉马草种子萌发和幼苗生长的影响. 草业科学, 2022, 39(8):1540-1549.
[20] 王立红, 李星星, 孙影影, 等. SA浸种对NaCl胁迫下棉花幼苗生长及光合特性的影响. 干旱地区农业研究, 2017, 35(2):114-120.
[21] 董静, 邢锦城, 王茂文, 等. 3种外源物质浸种对NaCl胁迫下马齿苋种子萌发的影响. 江苏农业科学, 2017, 45(14):103- 106.
[22] 王志恒, 黄思麒, 李成虎, 等. 13种藜麦萌发期抗逆性综合评价. 西北农林科技大学学报(自然科学版), 2021, 49(1):25-36.
[23] 刘文瑜, 杨发荣, 黄杰, 等. NaCl胁迫对藜麦幼苗生长和抗氧化酶活性的影响. 西北植物学报, 2017, 37(9):1797-1804.
[24] 杨宏伟, 刘文瑜, 沈宝云, 等. NaCl胁迫对藜麦种子萌发和幼苗生理特性的影响. 草业学报, 2017, 26(8):146-153.
doi: 10.11686/cyxb2016394
[25] 李小方, 张志良. 植物生理学实验指导. 北京: 高等教育出版社, 2016.
[26] 李蕊, 陈文莉, 孙泽元, 等. 光照、温度和干旱胁迫对藏药川西小黄菊种子萌发的影响. 中草药, 2023, 54(19):6443-6451.
[27] Zhang X, Shen Y Z, Mu K B, et al. Phenylalanine ammonia lyase GmPAL1.1 promotes seed vigor under high-temperature and -humidity stress and enhances seed germination under salt and drought stress in transgenic Arabidopsis. Plants, 2022, 11 (23):3239.
[28] 刘群, 彭斌, 田长彦, 等. 8种盐生植物种子萌发特征与NaCl盐度的关系. 生态学报, 2023, 43(17):7284-7293.
[29] 夏方山, 毛培胜, 闫慧芳, 等. 水杨酸对植物种子及幼苗抗逆性的影响. 草业科学, 2014, 31(7):1367-1373.
[30] 彭云玲, 保杰, 叶龙山, 等. NaCl胁迫对不同耐盐性玉米自交系萌动种子和幼苗离子稳态的影响. 生态学报, 2014, 34(24):7320-7328.
[31] 罗倩, 陈灿, 袁锋, 等. NaCl单一胁迫及NaCl胁迫下施磷对台湾相思幼苗生长和根形态的影响. 植物资源与环境学报, 2023, 32(5):78-88.
[32] 黄玉梅, 张杨雪, 刘庆林, 等. 水杨酸对盐胁迫下百日草种子萌发及幼苗生理特性的影响. 草业学报, 2015, 24(7):97-105.
doi: 10.11686/cyxb2014516
[33] Naglaa L, Yoh S, Gupta D K, et al. Modifications of water status,growth rate and antioxidant system in two wheat cultivars as affected by salinity stress and salicylic acid. Journal of Plant Research, 2020, 133(4):549-570.
doi: 10.1007/s10265-020-01196-x pmid: 32323039
[34] 黄奇娜, 徐有祥, 林光号, 等. 硅对镉胁迫下水稻苗期抗氧化酶系统及镉离子吸收和转运相关基因表达水平的影响. 中国水稻科学, 2023, 37(5):486-496.
doi: 10.16819/j.1001-7216.2023.230203
[35] 曹亦芹, 程碧真, 李州. 胺鲜酯(DA-6) 浸种对盐胁迫下白三叶种子萌发及抗盐性的影响. 草地学报, 2023, 31(1):140- 147.
doi: 10.11733/j.issn.1007-0435.2023.01.016
[36] Nunez M, Mazzafear P, Mazorra L M, et al. Influence of a brassinosteroid analogue on antioxidant enzymes in rice grown in culture medium with NaCl. Biologia Plantarum, 2003, 47(1):67-70.
[37] 刘鹏程, 王辉, 程佳强, 等. NO对小麦叶片干旱诱导膜脂过氧化的调节效应. 西北植物学报, 2004, 24(1):141-145.
[38] 张红. 硝普钠、24-表油菜素内酯\水杨酸浸种对盐胁迫下玉米种子萌发及幼苗生长的影响. 核农学报, 2012, 26(1):164- 169,181.
[39] 段辉国, 谢玉华, 倪祥银, 等. 水杨酸浸种对NaCl胁迫下青稞种子活力及抗盐性的影响. 河南农业科学, 2012, 41(7):27-30.
[40] 熊雪, 罗建川, 魏雨其, 等. 不均匀盐胁迫对紫花苜蓿生长特性的影响. 中国农业科学, 2018, 51(11):2072-2083.
doi: 10.3864/j.issn.0578-1752.2018.11.005
[41] Speroouli I, Moustakas M. Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. Journal of Plant Physiology, 2012, 169(6):577-585.
[42] 武俊英, 赵宝平, 刘景辉, 等. 葡萄糖浸种对NaCl胁迫下燕麦幼苗生长和渗透调节的影响. 麦类作物学报, 2014, 34(7):983-989.
[43] 钱玥, 李思源, 饶良懿. 盐碱胁迫对菊芋渗透调节及抗氧化酶系统的影响. 干旱区研究, 2023, 40(9):1465-1471.
doi: 10.13866/j.azr.2023.09.10
[44] 庞春花, 张媛, 李亚妮. 硝酸镧浸种对藜麦种子萌发及盐胁迫下幼苗生长的影响. 中国农业科学, 2019, 52(24):4484-4492.
doi: 10.3864/j.issn.0578-1752.2019.24.004
[45] Wang X X, Wang W C, Huang J L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt-stressed leaves of rice (Oryza sativa). Physiologia Plantarum, 2017, 163(1):45-58.
[46] 严青青, 张巨松, 徐海江, 等. 盐碱胁迫对海岛棉幼苗生物量分配和根系形态的影响. 生态学报, 2019, 39(20):7632-7640.
[1] Zhang Shengchang, Wei Yuming, Ma Lina, Yang Zhao, Liu Wenyu, Huang Jie, Liu Huan, Yang Farong. Effects of Planting Density and Fertilization on Growth Characteristics of Forage Quinoa [J]. Crops, 2025, 41(2): 128-134.
[2] Li Feng, Gao Hongyun, Zhang Chong, Zhang Baoying, Ma Jianfu, Guo Na, Bai Wei, Fang Aiguo, Yang Zhimin, Li Yuan. Effects of Salt Stress on Growth and Physiological Indexes of Oat [J]. Crops, 2024, 40(6): 140-146.
[3] E Lifeng, Xu Jinchong, Chen Xiubin, Quan Jianhua, Hua Jun, Yin Lijuan, Wang Shunqi, Zhao Wenqin. Effects of Exogenous Silicon on Seed Germination and Physiological Characteristics of Brassica pekinensis under Salt Stress [J]. Crops, 2024, 40(6): 212-217.
[4] Ma Lina, Wei Yuming, Wen Lifang, Zhang Xuejian, Yang Zhao, Huang Jie, Zhang Shengchang, Li Xiaoyu, Liu Huan, Yang Farong. Analysis of Agronomic Traits and Nutritional Quality of 22 Quinoa Germplasms in Yuanmou Area of Yunnan Province [J]. Crops, 2024, 40(6): 47-54.
[5] Zhang Xuli, Wang Ruijun, Xi Xiaoqian, Feng Xuejin, Li Hong. Effects of Drought Stress and Rehydration on Growth, Physiological Characteristics and Accumulation of Secondary Metabolites in Astragalus Mongholicus Seedlings [J]. Crops, 2024, 40(5): 204-211.
[6] Wang Fugui, Zou Runhou, Gao Julin, Wang Zhen, Cheng Zhipeng, Hao Qi, Zhang Yuezhong, Wang Zhigang. Effects of Straw Returning Methods on Soil Water and Heat and Seedling Growth and Yield of Spring Maize in Eastern Region of Inner Mongolia [J]. Crops, 2024, 40(4): 223-231.
[7] Hou Yuchen, Pang Chunhua, Zhang Yongqing, Kang Shuyu, Wu Yueyue, Yan Jingrong, Wang Jiaqi. Effects of Biochar and Nitrogen Fertilizer on the Physiological Growth Characteristics of Quinoa Seedlings under Saline Alkali Stress [J]. Crops, 2024, 40(4): 240-246.
[8] Zhang Ziyi, Wang Xuehu, Yuan Ying, Shen Zhifeng. Effects of Humic Acid Suspension Agent on Seed Germination and Seedling Growth of Wheat under NaCl Stress [J]. Crops, 2024, 40(4): 263-268.
[9] Gu Huaiying, Hu Shiqin, Zhao Qing, Liu Changhua, Meng Lijun. The Progress on Enhancing Salt Tolerance of Rice by Rhizosphere Microorganisms [J]. Crops, 2024, 40(4): 8-13.
[10] Liu Jianxia, Wang Wenqing, Xue Naiwen, Guo Xuhu, Ma Saiya, Zhu Guofang, Wen Riyu. Chromosome Karyotype Analysis of 14 Quinoa Germplasms from Different Habitats [J]. Crops, 2024, 40(3): 82-89.
[11] He Jiamin, Zhang Yongqing, Zhang Meng, Liang Ping, Wang Dan, Yan Fanfan. Effects of Seed Soaking with Uniconazole on Agronomic and Physiological Characteristics of Quinoa under Saline-Alkali Stress [J]. Crops, 2024, 40(2): 234-241.
[12] Lü Baolian, Yang Yuxin, Cui Licao, Shi Feng, Ma Liang, Kong Xiuying, Zhang Lichao, Ni Zhiyong. Identification of bHLH Family Transcription Factors of Wheat and Expression Analysis under Salt Stress [J]. Crops, 2024, 40(1): 65-72.
[13] Yang Enze, Wang Shuyan, Liu Ruixiang, Shi Fengyuan, Zhang Jinhao, Li Jiana, Li Zhiwei, Guo Zhanbin. Genetic Diversity Analysis of Quinoa Germplasm Resources Based on SRAP [J]. Crops, 2023, 39(6): 79-85.
[14] Yang Hongwei, Zhang Liying, Li Xiaohui. Research on the Moisture Content Variation and Influence to Rice Seed Germination under Salt and Alkali Stress by Low Field NMR [J]. Crops, 2023, 39(4): 253-259.
[15] Xu Xuewen, Wang Xingpeng, Wang Hongbo, Li Guohui, Tang Maosong, Cao Zhenxi. Effects of Salicylic Acid Application on the Growth and Physiological Characteristics of Cotton Seedlings under Salt Stress [J]. Crops, 2023, 39(3): 188-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Guangcai Zhao,Xuhong Chang,Demei Wang,Zhiqiang Tao,Yanjie Wang,Yushuang Yang,Yingjie Zhu. General Situation and Development of Wheat Production[J]. Crops, 2018, 34(4): 1 -7 .
[2] Baoquan Quan,Dongmei Bai,Yuexia Tian,Yunyun Xue. Effects of Different Leaf-Peg Ratio on Photosynthesis and Yield of Peanut[J]. Crops, 2018, 34(4): 102 -105 .
[3] Xuefang Huang,Mingjing Huang,Huatao Liu,Cong Zhao,Juanling Wang. Effects of Annual Precipitation and Population Density on Tiller-Earing and Yield of Zhangzagu 5 under Film Mulching and Hole Sowing[J]. Crops, 2018, 34(4): 106 -113 .
[4] Wenhui Huang, Hui Wang, Desheng Mei. Research Progress on Lodging Resistance of Crops[J]. Crops, 2018, 34(4): 13 -19 .
[5] Yun Zhao,Cailong Xu,Xu Yang,Suzhen Li,Jing Zhou,Jicun Li,Tianfu Han,Cunxiang Wu. Effects of Sowing Methods on Seedling Stand and Production Profit of Summer Soybean under Wheat-Soybean System[J]. Crops, 2018, 34(4): 114 -120 .
[6] Mei Lu,Min Sun,Aixia Ren,Miaomiao Lei,Lingzhu Xue,Zhiqiang Gao. Effects of Spraying Foliar Fertilizers on Dryland Wheat Growth and the Correlation with Yield Formation[J]. Crops, 2018, 34(4): 121 -125 .
[7] Xiaofei Wang,Haijun Xu,Mengqiao Guo,Yu Xiao,Xinyu Cheng,Shuxia Liu,Xiangjun Guan,Yaokun Wu,Weihua Zhao,Guojiang Wei. Effects of Sowing Date, Density and Fertilizer Utilization Rate on the Yield of Oilseed Perilla frutescens in Cold Area[J]. Crops, 2018, 34(4): 126 -130 .
[8] Pengjin Zhu,Xinhua Pang,Chun Liang,Qinliang Tan,Lin Yan,Quanguang Zhou,Kewei Ou. Effects of Cold Stress on Reactive Oxygen Metabolism and Antioxidant Enzyme Activities of Sugarcane Seedlings[J]. Crops, 2018, 34(4): 131 -137 .
[9] Jie Gao,Qingfeng Li,Qiu Peng,Xiaoyan Jiao,Jinsong Wang. Effects of Different Nutrient Combinations on Plant Production and Nitrogen, Phosphorus and Potassium Utilization Characteristics in Waxy Sorghum[J]. Crops, 2018, 34(4): 138 -142 .
[10] Na Shang,Zhongxu Yang,Qiuzhi Li,Huihui Yin,Shihong Wang,Haitao Li,Tong Li,Han Zhang. Response of Cotton with Vegetative Branches to Plant Density in the Western of Shandong Province[J]. Crops, 2018, 34(4): 143 -148 .